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Kurzfassung 

Eine wachsende Zahl von Citizen-Science-Projekten sammelt große Mengen an Naturbeobachtungs-

daten von Freiwilligen. Solche Daten sind ein wichtiger Beitrag zur Biodiversitätsforschung, weil sie 

Informationen über die Verbreitung von Arten für große Gebiete und über lange Zeiträume hinweg zur 

Verfügung stellen. Sie werden in der derzeitigen weltweiten Biodiversitätskrise dringend für die Er-

forschung und den Schutz der Biodiversität benötigt. Eines der wichtigsten Probleme, die gelöst wer-

den müssen, damit diese Daten tatsächlich verwendet werden können, ist ihre Datenqualität. Dieses 

Problem besteht v.a. bei Daten aus Zufallsbeobachtungen, die ohne strenge Vorgaben zur Sicherung 

bestimmter Datenqualitätsstandards vor oder während der Datensammlung entstehen. Es besteht ein 

großer Bedarf an methodischen Ansätzen zur automatischen Qualitätseinschätzung von Zufallsbe-

obachtungen von Arten, die es erlauben, die großen Datenmengen zu verarbeiten, die in den betreffen-

den Citizen-Science-Projekten entstehen. 

Zufallsbeobachtungen von Arten aus Citizen-Science-Projekten sind biologische, aber auch geogra-

phische Daten, da sie immer einen Ortsbezug besitzen. Da sie zumeist im Internet und von nicht ge-

schulten Freiwilligen gesammelt werden, gehören sie zu jenen geographischen Daten, die als Volun-

teered Geographic Information (VGI, Goodchild 2007) bezeichnet werden. Sie eignen sich daher be-

sonders zur Anwendung geographischer Kriterien für die Entwicklung entsprechender Methoden zur 

Einschätzung der Qualität. Zugleich sind Naturbeobachtungen eine besondere Art von VGI, da sie 

zumeist keine beständigen Objekte widergeben, sondern den Charakter von einmaligen Ereignissen 

haben, die nicht als korrekt oder fehlerhaft erwiesen werden können. Die Qualitätsprüfung muss daher 

auf Annäherungen zurückgreifen, wie beispielsweise auf die Plausibilitätsprüfung mithilfe bestimmter 

Vergleichsinformationen. 

In dieser Arbeit wurden neuartige Verfahren zur Qualitätsprüfung von Zufallsbeobachtungen von Ar-

ten entwickelt, die deren Plausibilität mithilfe ihres VGI-Kontexts einschätzen. Dabei wurden Daten 

aus zwei Citizen-Science-Projekten genutzt, die Zufallsbeobachtungen von Arten sammeln, und die 

aus zwei Untersuchungsgebieten stammen: Daten von ArtenFinder Rheinlan-Pfalz (Deutschland), und 

Daten des weltweiten Projekts iNaturalist aus Kalifornien (USA). In einem intrinsischen Verfahren 

wird dabei der geographische Kontext aus benachbarten Beobachtungen desselben Datensatzes er-

zeugt, indem artspezifische Beobachtungsgemeinschaften gebildet werden, die die typischerweise in 

der Umgebung einer bestimmten Art beobachteten Arten widergeben. Ein ebenfalls entwickeltes 

extrinsisches Verfahren nutzt als Quelle des geographischen Kontexts die OpenStreetMap, ein weit 

fortgeschrittenes VGI-Projekt, das detaillierte geographische Informationen über die physische Um-

welt zur Verfügung stellt. Der geographische Kontext einer Art wird hier in Form einer OSM-

Umgebung beschrieben, in der jene OSM-Elemente zusmamengefasst sind, die typischerweise in der 

Umgebung einer Beobachtung der betr. Art zu finden sind. Die Plausibilität einer neu hinzukommen-

den Beobachtung wird nun abgeschätzt, indem der Kontext dieser Beobachtung in Form benachbarter 

Beobachtungen, oder in Form der sie umgebenden OSM-Elemente, mit der Beobachtungsgemein-

schaft oder der OSM-Umgebung der betreffenden Art abgeglichen wird. Dieser Abgleich wird mithil-

fe von Ähnlichkeitsindices durchgeführt. 

Sowohl der intrinsische Ansatz mit Beobachtungsgemeinschaften als auch der extrinsische Ansatz mit 

OSM-Umgebungen wurden evaluiert, indem beide auf plausible und unplausible Beobachtungen an-

gewendet wurden. Hierbei wurden sowohl reale, bestätigte oder verworfene Beobachtungen verwen-

det, als auch plausible und unplausible Beobachtungen, die für diesen Zweck eigens künstlich erzeugt 

wurden. Die Evaluierung konnte zeigen, dass beide Ansätze in der Lage sind, plausible von unplausib-

len Beobachtungen anhand ihres VGI-Kontexts und mithilfe von Ähnlichkeitsindices zu unterschei-

den. Sie schätzen dabei die Plausibilität des Meldungsortes hinsichtlich der ihn umgebenden Meldun-



   
 

gen bzw. der umgebenden OSM-Elemente sowie der vom Beobachter angegebenen Art ein. Die nähe-

re Betrachtung der Evaluierungsergebnisse zeigte Unterschiede im Verhalten der Methoden bei Ver-

wendung unterschiedlicher Ähnlichkeitsindices. Auch zwischen den beiden Anwendungsfällen von 

Beobachtungsdaten unterscheiden sich die Ergebnisse teilweise. Die ungleiche räumliche Verteilung 

der Beobachtungsdaten und der OSM-Daten nimmt Einfluss auf die Werte der berechneten Ähnlich-

keitsindices. Beobachtungsgemeinschaften geben zumeist die biologischen und ökologischen Eigen-

schaften der Arten wider, zu denen sie gehören, während dies bei OSM-Umgebungen nur selten der 

Fall ist. Die methodischen Ansätze wurden mit einer Reihe von Paramater-Einstellungen getestet und 

erwiesen sich als weitgehend stabil, was ihre Funktionsweise angeht. Einige ebenfalls untersuchte 

methodische Erweiterungen, wie die Anwendung von Landnutzungs- oder Landbedeckungsdaten zur 

Schärfung des geographischen Kontexts, oder die Berücksichtigung von Beobachtungshäufigkeiten in 

der Ähnlichkeitsberechnung, eignen sich möglicherweise zur Verbesserung der Ergebnisse. 

In der zukünftigen Forschungsarbeit müssen Lösungen für einige Schwächen und Nachteile der hier 

untersuchten Ansätze zur Einschätzung der Plausibilität von Zufallsbeobachtungen von Arten gefun-

den werden. So können die hier untersuchten Methoden nur für Arten angewendet werden, die eine 

ausreichende Informationsbasis in Form vorhandener Beobachtungen aufweisen, und nur für zu prü-

fende Meldungen, die in Gebieten mit ausreichend Umgebungsbeobachtungen oder OSM-Daten lie-

gen. Der Einfluss wechselnder räumlicher Dichte der geographischen Kontextinformationen ist vor 

allem im extrinsischen Ansatz mit OSM-Umgebungen ein Problem. Beide Ansätze sollten darüber 

hinaus mit anderen Methoden kombiniert werden, die weitere Informatinen über eine Naturbeobach-

tung nutzen, wie beispielsweise das Beobachtungsdatum, oder den Grad an Erfahrung, die der jeweili-

ge Beobachter besitzt. 

 

 

 

  



 

Abstract 

In a growing number of Citizen Science projects, volunteers from the general public collect large 

amounts of observation data of organisms. Such data are an important contribution to biodiversity 

research, providing information on the distribution of species over large areas and long periods of 

time. In the current global biodiversity crisis, such information is urgently needed to support research 

and conservation efforts. One of the most important issues which must be addressed before these data 

can effectively be used, is data quality. This is a concern especially with data which are being collect-

ed in a casual way, without strict, formal protocols ensuring certain standards of data quality before or 

during the data collection process. There is great need for approaches which allow for assessing data 

quality of casual citizen science observations of organisms automatically, to cope with the large 

amounts of observation data which are produced by casual biodiversity citizen science projects.  

Casual citizen science observations of organisms are biological, but also geographical data, because 

they always possess location information. Collected mostly online and by untrained volunteers, they 

belong to the emerging domain of geographic information called Volunteered Geographic Information 

(VGI, Goodchild 2007). Approaches which are based on geographical criteria are therefore a promis-

ing avenue towards providing suitable methods for quality assessment. At the same time, casual citi-

zen science observations of organisms are a special kind of VGI, because they mostly do not represent 

permanent objects, but rather have the nature of events which cannot be proven to be correct or incor-

rect. Quality assessment must therefore resort to proxy approaches such as estimating the plausibility 

of an observation in light of certain reference information. 

This thesis developed and evaluated novel approaches to quality assessment of casual citizen science 

observations of organisms based on estimating the plausibility of observations in light of VGI context. 

It employed two use cases of casual citizen science projects with two different areas of interest: Ar-

tenFinder Rheinland-Pfalz (Germany), and the global project iNaturalist, of which data from Califor-

nia (USA) were used. In an intrinsic approach, geographic context is provided by neighboring obser-

vations from the same dataset which are transformed into species-specific observed communities, de-

scribing a species’ typical context of other species usually observed close-by. An extrinsic approach 

uses OpenStreetMap (OSM), a well-established global VGI project providing detailed geographic 

information on physical objects, for describing a species’ geographic context in the form of an OSM 

environment, consisting of the OSM features typically found in close proximity to a species’ observa-

tions. Plausibility of a new observation added to the dataset is estimated by comparing its context of 

neighboring observations or of OSM features to the species’ observed community or OSM environ-

ment. This comparison is achieved by using similarity indices.  

The intrinsic observed communities approach as well as the extrinsic OSM environments approach 

were evaluated by estimating the plausibility of plausible or implausible observations. This was done 

with real approved or rejected observations from the respective projects, but also with synthetic plau-

sible and implausible observations created for this purpose. Evaluation proved that both approaches 

are able to distinguish between plausible and implausible observations based on VGI context, using 

similarity index values. The approaches estimate the plausibility of the location of an observation in 

light of surrounding observations or OSM context, and in light of the species identification given for 

the observation by the volunteer. Careful examination of evaluation results revealed differences in 

behavior of both approaches depending on the similarity index used. Results also partly differed be-

tween the data use cases. Variable spatial density of observations and OSM data has an influence on 

similarity index values. Observed communities were found to reflect biological and ecological proper-

ties of species, while OSM environments rarely do so. Both methods were also tested with a number 

of parameter changes, and results found basically stable with different parameter settings. Some modi-



   
 

fications to the basic methodology of the approaches, such as applying auxiliary land cover data for 

focusing relevant geographic context or using observation frequency in similarity calculation, showed 

potential of improving results.  

Future work must seek to overcome the most important drawbacks and weaknesses of the approaches 

to plausibility estimation of casual citizen science observations of organisms developed in this work. 

They can be used only for species with an adequate base of previous observations, and for candidate 

observations in locations providing an adequate geographic context of observations or OSM data. In-

fluence of variable spatial density of context information on plausibility estimation is a problem espe-

cially in the extrinsic OSM environments approach. Both methods should be combined with other 

approaches using other information about an observation, such as the observation date, or the observ-

ers’ experience.  
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1 Introduction 

1.1 Motivation 

Biodiversity on earth is currently experiencing severe loss through extinction of species. This issue has 

been receiving rising amounts of attention from science as well as from the public since the 1980s 

(Wilson 1988). Some authors compare its magnitude, in terms of numbers of species lost, and in terms 

of the speed at which this loss occurs, with mass extinction events in earlier geologic ages (Novacek & 

Cleland 2001, Ceballos et al. 2015, Johnson et al. 2017). However, other than these earlier events, 

which were triggered by natural processes in earth’s history, the current extinction crisis (Ehrlich 

1988, Novacek & Cleland 2001) is caused by human activities. The most important factors are habitat 

loss or degradation (e.g., transformation of forests to agricultural land), overexploitation of natural 

resources (e.g., of water or soils), and invasive species harming local species communities (Ehrlich 

1988, Pereira et al. 2010, Pettorelli et al. 2014). These factors combine and interact with human-

induced climate change, which leads to shifts in species distributions (e.g., Steinbauer et al. 2018). 

Besides actual loss of species through extinction, another important facet of this crisis is decline in 

populations. For instance, decline in insect populations received much attention in recent years (Van 

Swaay et al. 2015, Hallmann et al. 2017), and negative impacts on other species groups such as birds, 

where many species rely on insects as a food source, have also been found (Schrauth & Wink 2018).  

International initiatives soon addressed these concerns, such as the Convention on Biological Diversity 

(CBD), which was initiated by the United Nations Environment Progamme (UNEP) and opened for 

signature on the 1992 United Nations Conference on Environment and Development at Rio de Janei-

ro1. One of its principle objectives is the conservation of biological diversity, supported, among other 

things, by suitable monitoring efforts. It was followed, in 2002, by a Strategic Plan which defined the 

10 so-called Aichi Biodiversity Targets, which were aimed at significantly reducing global biodiversi-

ty loss until 2010. This goal was, however, not reached (Butchart et al. 2010). A follow-up Strategic 

Plan 2011-2020 was installed with an extended set of targets2 (Buckland & Johnston 2017), but with 

the same overall goal of reducing biodiversity loss. There is some indication that this goal will again 

be missed (Tittensor et al. 2014).  

At the same time, gaps in the knowledge about biodiversity were identified as one of the most im-

portant difficulties which must be overcome to effectively face the biodiversity crisis (e.g., Balmford 

et al. 2005, Butchart et al. 2010, Schmeller et al. 2017). Gaps are found in geographic coverage, in 

temporal coverage, and in coverage of different species groups (Amano et al. 2016). Knowledge on 

biodiversity depends mostly on monitoring programs which collect data on species occurrence in 

space and time, as well as other variables (Proença et al. 2017). However, existing biodiversity moni-

toring programs, which often rely not only on professional scientists, but also on local volunteers with 

high expertise who support the programs for long periods of time, suffer from effects such as popula-

tion shifts from rural to urban areas, aging of volunteers, and societal changes which make it more and 

more difficult to recruit new long-term volunteers for such programs (Franke & Eissing 2010, Walz et 

al. 2013, Kettunen et al. 2016).  

Collaboration with volunteers in biodiversity research is part of what, today, is called citizen science. 

Despite the difficulties which traditional biodiversity monitoring is facing, citizen science is a very 

promising avenue in tackling the challenges presented by biodiversity data gaps. This is mostly due to 

                                                      
1 https://www.cbd.int/history/, last accessed on 2018-11-11 
2 https://www.cbd.int/sp/default.shtml, last accessed on 2018-11-11 
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the profound changes which have been taking place in the last 10 to 15 years in citizen science through 

technological progress (Newman et al. 2012, Dickinson et al. 2012, Kosmala et al. 2016), and which 

still continue (Brenton et al. 2018). Advanced internet technologies were the most important factor 

(Dickinson et al. 2010, Wiersma 2010, Newell et al. 2012, Liu et al. 2017, Mazumdar et al. 2018). In 

particular, technologies which allow for collaborative use of the web transform internet users from 

mere consumers to active producers of content (Budhathoki et al. 2008). They facilitated the emer-

gence of numerous online projects in recent years, where people can report observations of organisms. 

More technologies, such as Global Positioning System (GPS) receivers, smart phones and other mo-

bile devices supporting the use of mobile software applications (apps), and digital cameras are also 

important in the field of biodiversity citizen science (August et al. 2015, Pocock et al. 2018). Such 

projects are very varied (Pocock et al. 2017). Projects employing the general public to collect observa-

tions of species occurrences have the potential to produce very large amounts of occurrence data over 

broad geographic scales and long periods of time, and to do so at relatively low cost (Connors et al. 

2012, Dickinson & Bonney 2012, Hochachka et al. 2012, Tulloch et al. 2013, Theobald et al. 2015, 

Schmeller et al. 2017).  

Most studies which advocate citizen science as a promising way of improving the data basis for biodi-

versity research do not fail to point at serious issues which need to be addressed if such data are to be 

used in meaningful research (Hochachka et al. 2012). Most prominent among these is data quality 

(Kosmala et al. 2016, Pocock et al. 2018, Williams et al 2018). Data from citizen science sources suf-

fer from a lack of trust by potential data users in science and authorities (Conrad & Hilchey 2011, 

Kosmala et al. 2016), because data are often collected by persons who do not have formal expertise in 

the respective field. Projects, however, strive to enhance data quality and to build trust in their data 

outcome in many different ways (Wiggins et al. 2011, Freitag et al 2016, Kosmala et al. 2016). Efforts 

have been undertaken to establish data quality as a primary goal in citizen science and to make project 

organizers aware of its importance, e.g., in the European Citizen Science Association’s Ten Principles 

of Citizen Science (ECSA 2015, Robinson et al. 2018) or the Green Paper of Germany’s “Bürger 

schaffen Wissen” initiative (Bonn et al. 2016, Richter et al 2018). Moreover, many studies found that 

adequate analysis methods can be successfully used to overcome data quality issues, such as biases of 

different kinds (Encarnaçao et al. 2012, van Strien et al. 2013, Bird et al. 2014, Isaac et al. 2014, 

Kosmala et al. 2016, Botella et al. 2018, Robinson et al. 2018). In this way, such data can be put to 

many different uses in research (Powney & Isaac 2015). Data collected by volunteers in citizen sci-

ence projects may therefore indeed present a way of mitigating data gaps in biodiversity research, but 

there are more issues to be taken into account. For instance, citizen science projects exhibit global 

heterogeneity in distribution of recording. Global regions with high recording (mostly in the developed 

countries), and regions with globally high species richness (found mostly in the tropics) do not neces-

sarily match (Pocock et al. 2018). Also, citizen science observation data of organisms are sometimes 

found to fail in providing a suitable data basis for answering certain questions (Kamp et al. 2016).  

Many biodiversity citizen science projects have a relatively low level of structure or protocol in their 

data acquisition processes, which allows them to keep entry barriers for volunteers low (Wiggins et al. 

2011, Freitag et al 2016, Minghini et al. 2017) and to attract large numbers of volunteers. Often, large 

amounts of observation data are produced in relatively short periods of time. There is an urgent need 

of adequate approaches and methods for quality assessment of these observations (Idris et al. 2014). 

This work is aimed at contributing to the development of methods which allow for automatic plausi-

bility estimation of observations of organisms from such citizen science sources. They are an im-

portant component in making citizen science observations of organisms accessible for research in bio-

diversity and ecology, results of which contribute to stemming the depletion of biodiversity on earth. 
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1.2 Citizen Science and Volunteered Geographic Information: A 
Conceptual Landscape 

Citizen science was recently taken to a new level by the internet, mobile devices and other technologi-

cal innovations. It is situated within an extensive landscape of related phenomena and concepts, for 

which a number of different terms are used in scientific literature. This section presents the concept 

and term of citizen science and related concepts and terms which are basic for this thesis. It explains 

their origins and the relations among them. Citizen science observations of organisms, which are the 

primary object of this research, are geographical and biological data at the same time. This thesis uses 

a geographical perspective which views observations of organisms by citizen scientists as a form of 

Volunteered Geographic Information, or VGI (Goodchild 2007). It is therefore very important to clari-

fy the relations between citizen science, VGI and other related concepts which complement this con-

ceptual landscape. Concluding, this section presents a graphical representation illustrating relation-

ships, such as overlaps and inclusions, of the terms which are discussed here (Figure 1.2.1).  

The phenomenon of citizen science has been existing for a long time, at least for some centuries (Mil-

ler-Rushing et al. 2012, Liu et al. 2017). However, the term ‘citizen science’ is relatively new (e.g., 

Silvertown 2009, Dickinson & Bonney 2012). Finke (2014) cites Irwin’s 1995 “Citizen Science: A 

Study of People, Expertise and Sustainable Development” as the first book having that term in its title. 

There is a lively discussion going on about what should, or, maybe even more important, what should 

not be called citizen science (Eitzel et al. 2017). Attempts to define its boundaries use a number of 

different aspects of the phenomenon. Some ask for the presence of a clear scientific agenda in the form 

of a scientific hypothesis formulated before the actual start of the citizen science project. Such projects 

are then specifically designed to prove or disprove that hypothesis, following a scientific standard 

model (Silvertown 2009). Further aspects used to define citizen science include the scientific nature of 

the object examined, or the use of scientific methods, protocols or tools by participants (Haklay 2013). 

In the context of environmental monitoring by citizens, Resch (2013) highlights the importance of 

project participants’ local expertise in a certain scientific domain to be considered citizen scientists. In 

a typology of citizen science which uses the level of participation by citizens in a scientific endeavor 

as the main criterion, Haklay (2013) coined the term ‘extreme citizen science’ for projects with the 

highest possible level of citizen participation. In a related effort, Bonney et al. (2009) used the term 

‘public participation in scientific research’ (PPSR, see also See et al. 2016). They categorize citizen 

science projects by degree of participation into contributory, collaborative and co-created projects, a 

concept further extended later by Shirk et al. (2012). 

These aspects can be illustrated by looking at biodiversity citizen science. Many citizen science pro-

jects in the biodiversity domain examine the occurrence and distribution of organisms. Thus, their 

object is certainly scientific in nature (Haklay 2013). Most of these projects are of contributory type 

(Pocock et al. 2017). They are designed by scientists and receive data contributions by volunteers 

(Bonney et al. 2009). However, their approaches at how to collect data and the goals what to do with 

them are very diverse (Pocock et al. 2018). Some projects provide the online infrastructure to collect 

and manage reports of species occurrences by volunteers without pursuing a single, narrowly defined 

research agenda or hypothesis (Dickinson 2010). They do not impose strict protocols or rules on their 

participants, while of course striving for certain properties and quality standards for the data produced. 

ArtenFinder Rheinland-Pfalz3 and iNaturalist4, the data use cases of this work, are just two examples 

for this type of project. Their mode of data collection is often called casual or opportunistic. Other 

projects implement very specific procedures which they require their volunteers to adhere to, such as 
                                                      
3 https://artenfinder.rlp.de 
4 https://www.inaturalist.org/ 
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fixed places to be monitored for occurrences of a limited set of species, with a fixed amount of effort, 

and often at closely defined times or intervals. Examples include butterfly monitoring programs in 

many countries, for instance, in Germany5 or Great Britain6. These projects often have equally specific 

research goals and closely defined uses which the data are put to, one of which is reliable long-term 

monitoring of population development and of spatial distribution of certain species or species groups. 

Another difference can be found in the way projects acquire participants. Some projects invite anyone 

to take part, regardless of prior experience, personal skills or local expertise. Other projects make an 

effort to select and train participants to make them fit for the tasks they are asked to perform. Projects 

such as eBird7 (Sullivan et al. 2009) try to find a middle course of using some degree of protocol to 

produce data with increased value, e.g., data allowing for absence information to be derived. At the 

same time, they try to keep hurdles for participation low enough to attract large numbers of partici-

pants. We can see that the answer to the question whether a project qualifies as citizen science clearly 

depends on the aspects which are deemed crucial. This question is more often in debate for the pro-

jects on the “low protocol and open participation” end of the scale.  

However, for the purpose of this work, an insight is helpful which was phrased by Haklay (2013, p. 

107) as follows: “While it is possible to try to formulate a definition that delineates the boundaries of 

what should or should not be considered citizen science, a much more fruitful approach is to under-

stand the general properties of citizen science and its overlap with VGI”. Haklay thereby steers the 

discussion away from the necessity for, and difficulties associated with, defining the boundaries of 

citizen science. He rather puts it in relation with VGI. Contrary to citizen science, the origins and defi-

nition of this term are quite clear. Goodchild introduced it in his 2007 GeoJournal paper. He describes 

VGI as the result of “the widespread engagement of large numbers of private citizens, often with little 

in the way of formal qualifications, in the creation of geographic information” (Goodchild 2007, p. 

212). He also discusses several examples of projects producing different kinds of VGI, among them 

OpenStreetMap (OSM), now one of the most successful projects in the domain of VGI (Neis & Ziel-

stra 2014). Haklay (2013) introduces the term ‘geographical citizen science’ for the part of citizen 

science overlapping with VGI. It includes all kinds of citizen science projects “… where the collection 

of location information is an integral part of the activity” (Haklay 2013, p. 112). Among biodiversity 

citizen science projects are many examples for projects of this type. Observations of species from vol-

unteers always carry location information. They can therefore be considered to be a special kind of 

VGI. See et al. (2016) also list the term ‘collaboratively contributed geospatial information’ (CCGI) 

and trace it back to Bishr & Kuhn (2007) and to Keßler et al. (2009). They identify a higher degree of 

collaboration between individuals as the most important characteristic distinguishing it from VGI. 

There are also a large number of citizen science projects without a geographical element. Prominent 

examples include Galaxy Zoo8 and Foldit9, from the astronomy and medicine domains, respectively. 

However, they also use web technologies and the internet. Grey (2009) created the term ‘citizen cy-

berscience’ for this type of citizen science projects and the two examples cited here. Clearly, the term 

also matches most geographical citizen science projects, although Grey (2009) does not use geograph-

ical citizen science examples to illustrate it. Haklay (2013) extends Grey’s (2009) discussion of citizen 

cyberscience by adding the field of ‘participatory sensing’. Technical sensors and GPS receivers in 

volunteers’ mobile phones are used to collect georeferenced environmental measurement data. Grey 

mentions this concept (but not the term) already briefly in his article as one of the future developments 

anticipated for citizen science. It is related to the concept of ‘people as sensors’. Here, “people act as 
                                                      
5 http://www.tagfalter-monitoring.de/ 
6 http://www.ukbms.org/ 
7 https://ebird.org/home 
8 https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/ 
9 https://fold.it/portal/ 
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non-technical sensors with contextual intelligence and comprehensive knowledge” (Resch 2013, p. 

393), providing, according to Resch (2013), observations rather than measurements. This description 

in turn is closely related to what Goodchild (2007) states for the term ‘humans as sensors’, speaking of 

a sensor network consisting “of humans themselves, each equipped with some working subset of the 

five senses and with the intelligence to compile and interpret what they sense” (Goodchild 2007, p. 

218). Therefore, the terms ‘people as sensors’ and ‘humans as sensors’ can be and actually are used 

interchangeably (Resch 2013), along with a third variant, ‘citizens as sensors’, found in the title of 

Goodchild’s 2007 GeoJournal article. Finally, all of these concepts denote approaches which lead to 

the production of VGI or geographical citizen science data. 

The concepts discussed so far build on using the general public to perform important tasks in a project. 

In most cases, they use an internet application as a common platform for the contributors and the pro-

ject managers. Such activities are often subsumed under the term ‘crowdsourcing’, created by J. Howe 

in 2006 (Howe 2006). It has been eagerly accepted for use in academic scientific discussion about 

VGI and citizen science, although it was not coined in the (academic) scientific community. Most of 

the examples used by Howe in his original article to describe the phenomenon have not an academic, 

but rather a commercial, business, industry, or media background. They present crowdsourcing as a 

new form of the business practice of ‘outsourcing’. Such activities produce ‘user-generated content’ 

along the way. This places the concept of crowdsourcing within that broader concept also used by 

Goodchild in his description of VGI as “a special case of the more general Web phenomenon of user 

generated content” (Goodchild 2007, p. 212).  

The new processes and tools which lead to the generation of VGI have also been subsumed under the 

term ‘neogeography’ (Turner 2006, Haklay et al. 2008, Connors et al. 2012). While overlapping heavi-

ly with VGI, geographical citizen science and user-generated content, Haklay et al. (2008, p. 2022) 

state that “Neogeography websites do not necessarily rely on user-generated content to supply innova-

tive services and instead some supply data which they collect from disparate or difficult to access 

sources.”  

For citizen science, it should be noted that there is a “non-internet” sector in the form of projects 

which use traditional, analog methods, at least for parts of their activities. Examples include the collec-

tion of botanical or zoological specimens from citizen scientists, which simply can’t be collected, 

transmitted, stored or shared in digital form, or the use of paper forms for information transmission. 

For instance, the German Mückenatlas project10 collects specimens of mosquitos along with a paper 

questionnaire (Kampen et al. 2015). What’s more, some projects or programs do not use the 

crowdsourcing approach to draw on the general public for acquiring participants. They use a more or 

less fixed network of volunteers who reliably contribute on a regular basis, often over many decades, 

something that could be termed “non-crowd” citizen science. Many meteorological monitoring pro-

grams work that way (Elwood et al. 2012; Haklay 2013, World Meteorological Organisation 2001). 

Eitzel et al. (2017, p. 10) also conclude that “not all citizen science is crowdsourcing, and not all 

crowdsourcing is citizen science”. Finally, there is a “dark figure” of citizen scientists who do not take 

part in collective efforts or projects which cross-link them with other citizen or professional scientists 

via the internet or in other ways. They engage in scientific research on their own and on their own 

account (Wink 2017).  

To conclude this discussion, Figure 1.2.1 wraps up graphically the relations between most of the terms 

discussed here, especially overlaps and inclusions in one another. As the general discussion is going 

                                                      
10 https://mueckenatlas.com/ 
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on, new concepts and terms will not fail to emerge in the future, modifying the landscape which is 

described here. 

 

Figure 1.2.1: Graphical representation of the conceptual landscape of citizen science and VGI. 

Citizen science is a universal phenomenon which interacts and overlaps with a large number of scien-

tific domains and social phenomena. Therefore, there are a large number of other perspectives possi-

ble, besides the geographical perspective used here. Also, this discussion and the graphical rendering 

of its results may be questionable, because it includes terms and concepts which are not all of the same 

nature. For instance, VGI is rather the product of certain approaches to collecting geographical infor-

mation, whereas citizen science or crowdsourcing are terms which denote processes rather than their 

results or outcomes (See et al. 2016). However, the overview provided in this section is still useful, 

because most authors do not explicitly consider those differences when using the terms in a common 

context. For this work, its main purpose is to put the terms ‘citizen science’ and ‘VGI’ in relation with 

one another and with some more specific and some more general concepts, because this work deals 

with citizen science data which are a special kind of VGI, and with projects which are part of geo-

graphical citizen science. 
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1.3 Assessing Quality of Citizen Science Observation Data of Organ-
isms: Principles, Approaches, and Current Practice 

Quality of citizen science observations of organisms has been the object of research ever since new 

web technologies led to a growing availability of such data. In a review of contributory citizen science 

projects, Wiggins et al. (2011) categorize the different ways of handling data quality issues by the 

stage of the data collection process in which they are implemented. The authors differentiate between 

methods introduced before data collection, methods which take effect during the data collection pro-

cess, and finally methods which are used on the resulting data. In another survey of strategies em-

ployed by citizen science projects to support the credibility of their data outcomes, Freitag et al. (2016) 

adopt this useful principle in a similar approach of categorization and group their survey results into 

“early actions”, “in the field”, and “in the office” approaches. Moreover, Bordogna et al. (2014 and 

2016a) review strategies of data quality improvement according to when they are adopted (before or 

after VGI data creation) and divide them into “ex ante” (before data creation) and “ex post” (after data 

creation) strategies respectively.  

Approaches to ensure data quality or to build credibility before the start of the data collection process 

typically include training of volunteers or implementing standards which volunteers are required to 

meet. This aims to avoid sources of error connected to the volunteers (e.g., Kosmala et al. 2016). 

Freitag et al. (2016) also list advice by a scientific institution or by scientists during project develop-

ment, while Wiggins et al. (2011, p. 18) list the implementation of “quality assurance project plans”, 

Both strategies are aimed at strengthening project design and at avoiding sources of error connected to 

project structure. Some of these approaches are also used during the process of data collection, espe-

cially volunteer training and selection of participants by pre-defined levels of skill (Wiggins et al. 

2011). In this stage, more mechanisms are taking effect, such as supervision of participants by experts 

or experienced volunteers, or technological tools which support the process of data recording (Freitag 

et al. 2016). Also, repeated sampling, the use of standardized equipment, requirements to submit evi-

dence (e.g., photos) or additional paper forms along with online reports all support data quality in the 

stage of data acquisition (Wiggins et al. 2011). Often, experiences made in the early stages of data 

acquisition are used to improve project design even after the proper project development has ended, 

with the aim of enhancing the quality of resulting data (Kosmala et al. 2016). Again, some strategies 

employed in this second stage of the data collection process are also used in the third stage, i.e. after 

data collection. One of these strategies is the identification of observations which appear unusual for 

some reason (Wiggins et al. 2011). Some projects check observations against predefined threshold 

values of known parameters on submission, such as seasonal occurrence or plausible numbers of indi-

viduals, and provide feedback to the volunteer right away. Jacobs (2016) discusses some examples of 

this type. Another technique which can be applied during or after data collection is evaluation of a 

volunteer’s performance, which may require background information on the volunteer (Wiggins et al. 

2011), but which can also be done on the basis of the volunteer’s contributions. The latter approach is 

used by ArtenFinder Rheinland-Pfalz, which records the numbers of observations per observer that 

were accepted or rejected in the project’s validation process. This allows for the calculation of an ob-

server-specific performance parameter (Jacobs & Schotthöfer 2015). Many projects practice more 

methods of quality control in the post-data-collection stage, including manual data validation by ex-

perts, image recognition, checking against reference data, or computational methods which use statis-

tics or data mining (Wiggins et al. 2011). Freitag et al. (2016) add to this list the publication of results 

or data in outlets with peer review as another means of enhancing credibility. Finally, Wiggins et al. 

(2011) also list documentation of quality assurance mechanisms as an important element.  
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Building on their former work, Wiggins et al. (2013) provide a data management guide for project 

managers. They propose use of the term ‘quality assurance’ for all mechanisms employed to assure 

data quality in the stages before and during data collection, and the term ‘quality control’ for the post-

data-collection stage. This is a very useful step towards disambiguating these terms, which are so far 

not used in a systematic manner in the relevant scientific literature. A third term which does not appear 

in the sources cited above, but which is widely used in the literature on data quality of citizen science 

and VGI data, is ‘quality assessment’ (e.g., Crall et al. 2011, Foody et al. 2013, Samy et al. 2013, Bor-

dogna et al. 2014, Fan et al. 2014, Arsanjani et al. 2015). It can be recognized as a necessary element 

of quality control (in the sense introduced by Wiggins et al. 2013), because assessment of quality can 

only be performed on already existing data. Compared to ‘quality assurance’ and ‘quality control’, the 

term is more neutral because it does not contain any element of quality enhancement or any suggestion 

of that a certain level of quality should be insured. It rather denotes the examination of the quality of a 

piece of information or of a dataset, the results of which can be used for quality control, in the dual 

sense of error identification and of certification of (high or adequate) quality. Results of quality as-

sessment are, of course, a necessary basis for quality improvement. Chapman (2005) used the term 

‘data cleaning’ to denote a combination of quality assessment and subsequent quality improvement 

based on quality assessment results. 

Goodchild & Li (2012) present three main mechanisms of quality control which are suitable for VGI 

projects, and which are also used in practice of data quality control. Citizen science observations of 

organisms is a form of VGI (see section 1.2), such that these mechanisms are also applicable to such 

data. The mechanisms identified by Goodchild & Li (2012) are the following: 

 The Crowd-sourcing approach, referring to the principle that data errors are quickly found 

when many people work on the same dataset (also sometimes called “Linus’ Law”), 

 the social approach, where certain experienced users take the role of controllers watching over 

data quality, deciding editing disputes, and so forth, and 

 the geographic approach, where the power of geographic context is used to check data using 

formalized rules which build on geographic knowledge. 

All three mechanisms are well established in quality control practice for citizen science observations 

of organisms. Goodchild (2013) points to serious drawbacks of the first two approaches. For instance, 

the crowd-sourcing approach may fail if a piece of information is relatively obscure, that is, if it is not 

well known by other users who might correct it if it is represented erroneously in the data. In the case 

of observations of organisms, this concern translates to the problem that they do not, in many cases, 

represent geographic facts but transient events which cannot be verified, an important issue which will 

be discussed in detail in chapter 2. The social approach has the main problem of involving manual 

checking of data by persons, which makes it slow (Goodchild 2013). In projects where large amounts 

of information are acquired in relatively short periods of time, this factor compromises the feasibility 

of this approach. Goodchild (2013) concludes that the geographic approach, with its ability to provide 

tools which can be used for automatic quality assessment of data, holds great potential to solve these 

issues, and he identifies a great research need in this area, especially for geographic information sci-

ence. Yan et al. (2017) also cite two of Goodchild & Li’s (2012) approaches (the crowd-sourced ap-

proach and the geographical approach), but relate them with two other strategies which are also com-

mon in VGI data quality assessment. The first of these is based on the provenance or lineage of a fea-

ture in a VGI dataset and therefore builds on information about its history (e.g., Mooney & Corcoran 

2012a). The second approach they mention is the use of trust, centering on a VGI contributor’s experi-

ence, reputation and trustworthiness which can be used as a proxy to assess the quality of a volunteer’s 

contributions to a dataset (see also section 2.3). 
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Research, as well as quality control practice in citizen science projects, is already tapping into the field 

of geographical methods for VGI data quality assessment. The geographic context which is necessary 

for using this approach can come from two principle types of sources. On the one hand, geographic 

data can be used which describe environmental aspects of the geographic context of the observation 

data whose quality is to be assessed. On the other hand, other observation data within a project provide 

context. A potential third source of geographic context data for observations of organisms would be 

provided by authoritative reference data of species occurrences collected by scientific standards (Snäll 

et al. 2014). For other types of VGI, such as OSM, using authoritative reference data has been a much-

used strategy for assessing the quality of datasets (Neis & Zielstra 2014). However, suitable reference 

data for applying this quality assessment strategy to citizen science observation data of organisms do 

not exist for most species or regions (Snäll et al. 2014, Yan et al. 2017, Vahidi et al. 2018). In a recent 

study, Vahidi et al. (2018) use a combination of context sources to assess the quality of citizen science 

observations of a plant species from iNaturalist and E-Flora BC11. They use a niche-modelling ap-

proach to assess an observation’s consistency with the target species’ ecological requirements. This 

approach builds on geographic data about environmental variables, such as climate parameters and 

elevation, to calculate the probability of the occurrence of the target species at a location. In a second 

indicator an observation’s distance to the center of a cluster of previous observations of the target spe-

cies is used as a measure of trust in the observation. The data basis for finding these clusters consists 

not only of citizen science observations from the same dataset, but also of records from museum col-

lections and herbaria, which are considered authoritative. Thus, their first approach (based on niche 

modelling) makes use of geographic information from outside the citizen science project whose obser-

vations are evaluated, while the second approach uses, at least in part, information about geographic 

context which comes from the project whose observations are assessed, as well as external observa-

tions which are considered authoritative. This second indicator builds on work by Yan et al (2017), 

who introduce a quality indicator for crop pest reports from farmers in China which uses the distance 

of a report to the center of a cluster of similar reports. Both studies complement their indicator (or 

indicators) based on geographical context by a trust indicator that evaluates the volunteers’ abilities. 

Mülligann et al. (2011) propose a method for evaluating the plausibility of new points of interest (POI) 

in OSM. They establish a semantic similarity between OSM tags based on the similarity of tagging 

histories of OSM objects and on their proximity to existing POI of the same type. Interestingly, the 

different nature of OSM data when compared to citizen science observations (see also section 2.2) 

leads to an inversion of the plausibility evaluation in certain cases: while an observation of a species or 

phenomenon appears more plausible if it is closer to a cluster of already existing observations of the 

same species or phenomenon (Yan et al 2017, Vahidi et al. 2018), a new POI which is added to OSM 

in a location which is close to an already existing POI of the same type may appear implausible, espe-

cially with certain POI types which tend to be spatially dispersed, such as post offices (Mülligann et 

al. 2011).  

Quality control practice in citizen science projects collecting casual observations of organisms makes 

use of a number of filtering methods based on heuristics which use general knowledge about a species, 

including geographic criteria. Some examples are also discussed in Jacobs (2016). For instance, the 

well-known American bird reporting portal eBird, the German bird reporting portal ornitho.de12 and 

the German multi-species portal naturgucker.de13 check observations for accordance of region and 

season, based on known species properties in this respect. The “cleaner rules” employed in the Na-

tional Biodiversity Network14 in the UK are a similar example which uses known spatial and temporal 

                                                      
11 http://ibis.geog.ubc.ca/biodiversity/eflora/ 
12 https://www.ornitho.de/ 
13 https://naturgucker.de/natur.dll/$/ 
14 https://nbn.org.uk/news/new-record-cleaner-rules-now-available/, last accessed on 2018-10-31 



10 1.3 Assessing Quality of Citizen Science Observation Data of Organisms 

 

distribution of species (Spyratos et al. 2014), and so is the North American project Feeder Watch15 

(Bonter & Cooper 2012). First steps towards using previous observation data can be found in natur-

gucker, which checks for previous observations of a species in a region when a new observation of the 

species is submitted for that region. eBird tunes filter parameters of their heuristics based on existing 

observation data (Sullivan et al. 2014). In an attempt to make use of geographical criteria in order to 

support the expert validation of observations, ArtenFinder Rheinland-Pfalz, one of the data use cases 

of this work, implemented a plausibility tool which, among other things, offers information about spe-

cies observed around a candidate observation (Jacobs & Schotthöfer 2015). This tool is designed to 

support validation decisions on new ArtenFinder observations. However, the information on species 

found around a candidate is so far not used in quality assessment practice (personal information D. 

Frank (ArtenFinder/KoNat), 07-2017) because it is too complex and therefore too time-consuming to 

use (see also section 2.1.1). The same plausibility tool also uses another geographic approach by 

checking for previous observations of the same species in spatial proximity to a new observation, 

which is related to similar checks in, e.g., naturgucker (see above). It is complemented by evaluation 

of observer trustworthiness and a temporal criterion (Jacobs & Schotthöfer 2015). ArtenFinder also 

allows for observers to add information on geographical context to an observation, by adding a photo 

of the habitat where the observation was made, which can be very helpful to experts who check the 

observation and evaluate its plausibility. However, this option is rarely used by ArtenFinder observers: 

in the most recent 500 observations added to the system before 2018-10-12, just 6% provided a habitat 

photo. The method of asking observers to provide context with an observation was also studied by 

Bordogna et al. (2016b), albeit not with a focus on the geographical context. Rather, they asked ob-

servers of crops to provide a self-assessment of how certain they were about the crop classification of 

their contribution, and to describe the conditions under which the observation was made (e.g., distance 

to the reported object). Many citizen science projects in the biodiversity domain allow for contextual 

information to be added,whether geographic or of some other form. iNaturalist, another data use case 

of this work, provides a wide range of additional input fields to be added to an observation and even 

allows for users to create new input fields (see also section 2.2). Ornitho.de (already mentioned above) 

allows observers to add context such as time, age and sex of the observed individual, land use, behav-

ior and more from a fixed set of additional input fields, but all of these are optional.  

The difficulty of finding and accessing suitable external reference data for VGI data quality assess-

ment has triggered a number of efforts to provide intrinsic approaches to the problem. For instance, the 

OSMatrix (Roick et al. 2011) allows for visual assessment of relative data completeness of OSM with-

in a spatial grid structure. Barron et al. (2014) present a comprehensive framework for assessing the 

quality of extracts of OSM data. This framework mainly examines completeness aspects of objects as 

well as of attribute information, and currentness. It builds on the history of the OSM extracts which 

are examined. Their saturation-based approach to estimating the completeness of the road network is 

adopted and developed further by Barrington-Leigh & Millard-Ball (2017). An intrinsic approach to 

assess OSM class completeness was the subject of a study by Ballatore & Zipf (2015). These works 

mostly examine the quality of datasets, rather than of individual objects, but there are also examples 

for intrinsic data quality assessment of individual objects, such as Mooney & Corcoran’s (2012a) ap-

proach which uses the editing history of OSM objects. Some studies use intrinsic geographic context, 

such as Mülligann et al.’s (2011) spatial semantic approach for OSM POIs or Yan et al.’s (2017) clus-

ter-based approach for reports of crop diseases already cited above, but they are rare. 

Several aspects of research need can be identified from this review of the research and practice in 

quality assurance and quality control of VGI, which guided the direction of research of this work. 

Many citizen science projects build trust in their data by employing quality assurance strategies which 

                                                      
15 https://feederwatch.org/ 
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take effect before or during data acquisition in an often successful effort to ensure certain standards 

and procedures bearing on the quality of the data outcome. Another type of projects, whose data are 

often called casual or opportunistic data, use no or only few such strategies. Such projects are often 

faced with the criticism of not being adequately scientific (see section 1.2), but can produce very valu-

able observation data if proper strategies for quality control after data collection are in place. A wide-

spread approach is checks of the plausibility of observations which are perfomed by experts (Wiggins 

et al. 2011) based on their expert knowledge about species and their distribution. Low entry barriers 

lead to large numbers of observers taking part in projects collecting casual observations. They produce 

large amounts of observations which need to be checked. However, expert checking can be slow 

(Goodchild 2013) and does not scale well. There is, therefore, a great need for methods for filtering 

unusual observations which need special attention. Such methods can be based on different aspects of 

an observation, such as trust in the observer, temporal aspects, and geographical criteria. Among these, 

geographical criteria have been identified to hold especially great potential in the VGI domain (Good-

child 2013), to which casual citizen science observations of organisms belong. These methods can 

support experts who are in charge of validating observations, but they can also be applied by any data 

user who needs to decide which observations to select for the purpose he or she has in mind, and 

which to disregard. What is more, such methods cannot only be used to identify unusual observations 

which are potentially of low quality, but they can also be used to prove high quality of observations, 

and they can help to objectify data quality assessment. 
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1.4 Objectives and Research Questions 

In response to the research need identified in section 1.3, the work presented here focuses on casual 

citizen science observations of organisms. There is particular need for data quality assessment ap-

proaches for this type of data, due to a lack of data quality assurance procedures employed before and 

during data collection, which is a common characteristic of projects collecting such data. In these pro-

jects, observers are free to decide about all core aspects of the observation process: 

 “what”: which organisms to report and which to ignore, 

 “when”: time and frequency of observation activity, 

 “where”: which locations to choose for observation activity, and 

 “how”: amount of effort invested (duration of time invested, distance or area covered), re-

sources used (e.g., equipment such as cameras or binoculars, auxiliary information material 

such as guide books or online resources for species identification), modes of observation (e.g., 

moving around, staying at one location, or a mix of both). 

Quality assessment approaches for such data necessarily target the ex-post stage of data collection, 

assessing the quality of observations after they were submitted to the dataset by the observer. These 

approaches have the potential to reduce the workload in quality control regimes based on expert vali-

dation of observations, by providing filtering mechanisms which identify unusual or doubtful observa-

tions, and may even be used to prompt volunteers not to submit doubtful observations.  

This work uses the geographical context of observations as its starting point, because there is great 

potential for novel approaches to quality assessment of casual citizen science observations of organ-

isms in this field. Geographical context can be used to develop plausibility indicators which estimate 

the plausibility of an observation in light of that context, while verification of the truth of an observa-

tion is mostly not possible due to the event nature of such observations, an important aspect which will 

be further discussed in chapter 2. 

What is more, approaches should be examined which make use of the full information content of mul-

ti-species datasets and thus go beyond just using geographic relations within observations of a single 

species, such as the cluster-based method presented by Yan et al. (2017) and used by Vahidi et al. 

(2018), cited above (section 1.3). Multi-species approaches hold the potential of working on observa-

tions of a species even in the absence of previous observations of that species in the vicinity of the 

observation which is examined. Of course, they are also restricted to data environments providing the 

necessary multi-species context. 

Further, this work proposes approaches to solve the problem of assessing the quality of individual 

observations, not of entire datasets or subsets (Keßler & de Groot 2013), because assessing the quality 

of individual observations is at the basis of all analyses and uses the data may be put to later, including 

quality assessment of the dataset as a whole (Pocock et al. 2018, Spyratos et al. 2014). All subsequent 

uses must in some way rely on the quality of individual observations, which is also why most projects 

collecting casual citizen science observations of organisms have some procedure in place for assessing 

the quality of individual observations (see section 1.3).  

In a domain where there is a general lack of authoritative reference data for extrinsic quality assess-

ment (see section 1.3), it is of special interest to look for intrinsic approaches to quality assessment. In 

this work, an approach is considered to be intrinsic if it requires no data other than those provided by 

the project whose observations are assessed. However, while intrinsic approaches have important ad-

vantages, especially skirting the difficulty of finding appropriate external sources of geographic con-
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text information, they also have disadvantages based on the limits of context information which is 

intrinsically available. Overcoming these limits requires combination of multiple sources of geograph-

ic context in plausibility assessment, including extrinsic ones. From the perspective of casual citizen 

science observation data in the biodiversity domain, OSM is a novel source of extrinsic geographic 

context information within the VGI domain, whose value for use in quality control of casual citizen 

science observations of organisms has so far not been thoroughly explored.  

All of the above considerations condense into the following principle research questions, which are 

tackled in this work: 

1. Principle research questions: 

a) How can geographic context be used for intrinsic assessment of the plausibility of 

casual citizen science observations of organisms? 

a1) How can casual observations be turned into an intrinsic source of geographic context? 

a2) How can this intrinsic context information be used to estimate plausibility of a candi-

date observation? 

 

b) How can extrinsic VGI data be used for assessing the plausibility of casual citizen 

science observations of organisms? 

b1) How can OSM data be used as an extrinsic source of geographic context? 

b2) How can this extrinsic context information be used to estimate plausibility of a candi-

date observation? 

Answering the principle research questions requires the following steps: 

 identify approaches which are able to make use of geographic relations between casual citizen 

science observations, or between these observations and OSM data, to produce meaningful 

geographic context, 

 develop these approaches into methodologies which allow for using them as plausibility indi-

cators, and 

 conduct thorough studies to examine the properties and behavior of these plausibility indica-

tors.  

Studies on the properties and behavior of approaches for plausibility assessment, whether based on 

intrinsic geographic context from observations, or on extrinsic VGI context from OSM, raise a number 

of in-depth research questions which need to be answered to grasp the value and limits of these ap-

proaches: 
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2. In-depth research questions: 

a) What are the effects of the spatial properties of geographic context data on plausi-

bility estimation? 

Both casual citizen science observations of organisms and OSM data are VGI. Such data 

have special properties concerning spatial structure, especially uneven distribution in 

space. How does this structure affect results obtained with approaches to plausibility esti-

mation based on geographic context from such data? 

b) How do species properties affect results? 

Observations of biological species are a very special kind of VGI because species have 

various properties reflecting their biology and ecology. How do such factors bear on the 

results and their interpretation? 

c) How do changes to parameters and methodological modifications affect results? 

How exactly do parameter changes influence the approaches’ behaviors? Which methodo-

logical modifications and extensions are promising, and what are the tradeoffs? 

d) What are the extent and limits of indicative power of the obtained approaches to 

plausibility estimation? 

In order to gauge the usefulness of any plausibility indicator, it is important to determine 

as far as possible the exact extent and limitations of the information it is able to convey. 

What exactly does such an indicator tell us about the plausibility of an observation? What 

is it not able to tell us? 

Chapter 2 of this thesis introduces the projects whose data were selected as use cases for this work. In 

a detailed comparison, it presents relevant properties of the projects and their data and discusses con-

sequences for quality assessment of these data. Chapter 3 presents two new approaches to plausibility 

estimation of casual citizen science observations of organisms: the intrinsic observed communities 

approach and the extrinsic OSM environments approach. It explains the methodological considerations 

which form their basis, and provides step-by-step descriptions of their functionality. Both approaches 

are evaluated by using data from the use cases described before, and evaluation results are presented in 

chapter 4. Detailed discussions in chapter 5 examine the evaluation results, especially effects of the 

spatial properties of context data and of species properties. Effects of parameter changes and methodo-

logical modifications are also discussed in detail. Extent and limits of the approaches’ indicative pow-

er concerning a candidate case’s plausibility are also treated in chapter 5, using a number of practical 

examples. Chapter 6 provides general conclusions from this work and proposes numerous paths to 

follow in future research work building on what was achieved here. 

 

 



 

2 Properties of Casual CitizenScience Observation Da-

ta and OSM: The VGI Perspective 

A large number of web-based citizen science projects which are collecting observations of organisms 

from volunteers went online in recent years. There are virtually hundreds of such projects (See et al. 

2017). This multitude is accurately reflected in a number of reviews which used different criteria to 

analyze their properties and outcomes, with different study goals. For instance, Theobald et al. (2015) 

reviewed 388 projects to quantify the actual impact of biodiversity citizen science on biodiversity re-

search. Chandler et al. (2017) analyzed 420 citizen science programs in the biodiversity domain con-

cerning their coverage of essential biodiversity variables and these programs’ geographical and taxo-

nomic coverage. This work uses casual citizen science observation data of organisms from two pro-

jects: ArtenFinder Rheinland-Pfalz and iNaturalist. ArtenFinder Rheinland-Pfalz and iNaturalist are 

both geographical citizen science projects producing casual observations of organisms which they 

make publicly available. From the multitude of possible use cases, these two biodiversity citizen sci-

ence projects were selected because they collect observations of a wide range of species in a casual 

way. Data of this type are the focus of this work for reasons explained in sections 1.3 and 1.4. Both 

projects’ data collection follows similar procedures, giving data properties a number of important 

common characteristics which allow for using basically the same methodologies on both, and to com-

pare results. Also, both use cases provide adequate amounts of data within the areas of interest select-

ed (reasons of which are explained below). A the same time, the use cases possess interesting differ-

ences, e.g., in species composition of data, geographic characteristics of areas of interest, organiza-

tional background of projects etc., which were expected to lead to insightful differences in results ob-

tained with the one or the other use case. However, it can certainly be said that this work would have 

been equally possible with other project and data use cases, producing comparable results. In the case 

of ArtenFinder, this research builds on previous work which aimed to support validation of observa-

tions by plausibility tools (Jacobs & Schotthöfer 2015). 

Data from OSM are used in this work as an additional source of geographic context. OSM is one of 

the most successful VGI projects and also one of the most researched in recent years (Elwood et al. 

2012, Neis & Zielstra 2014). It provides VGI context in an accessible way on a global scale. While 

sharing some characteristics with the citizen science projects and data used here, it also presents char-

acteristics which distinguish the OSM project and its data. It is important to understand the properties 

of the projects used here, as well as the properties of their data, in order to be able to understand the 

results obtained with the approaches to plausibility estimation for casual citizen science observation 

data of organisms developed in this work. After portraying the projects and their data one by one in 

section 2.1, this chapter engages in a comparative discussion of their properties (section 2.2). The 

chapter concludes by identifying important consequences for quality assessment of casual citizen sci-

ence observation data (section 2.3). 
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2.1 Project and Data Properties 

2.1.1 ArtenFinder Rheinland-Pfalz 

The project and its area of interest 

ArtenFinder Rheinland-Pfalz provides a web portal and an app for collecting observations of organ-

isms from the general public. It went officially online early in 2011. Compared to most initiatives of 

this kind, it has a rather narrow spatial scope, focusing its efforts on the German federal state of Rhein-

land-Pfalz (see Figure 2.1.1 and Figure 2.1.2). Another property setting the project apart is the fact that 

observations, after expert validation, are incorporated in the official species distribution data of the 

federal state of Rheinland-Pfalz and serve a number of purposes in conservation administration and 

planning. This use of citizen science data in government, administration and planning is still rather 

unusual, but there is an increase in the use of citizen science approaches by environmental authorities 

worldwide (Owen & Parker 2018). The European Union also promoted collaboration of citizen sci-

ence and environmental policy makers by supporting so-called Citizens’ Observatories (Liu et al 

2017). 

 
Figure 2.1.1: Geographic situation of the federal state of Rheinland-Pfalz. Area: 19,854 km2. (Source 
of national boundaries: ESRI16. Source of Rheinland-Pfalz state line: Lanschaftsinformationssystem 
der Naturschutzverwaltung (LANIS) Rheinland-Pfalz.) 

                                                      
16 Portions of this document include intellectual property of ESRI and are used herein by permission. Copyright 
© 2018 Environmental Systems Research Institute, Inc. All Rights Reserved; 
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Figure 2.1.2: Rheinland-Pfalz, topographic overview. (Source of base map: OpenStreetMap17. Source 
of Rheinland-Pfalz state line (black): Lanschaftsinformationssystem der Naturschutzverwaltung (LA-
NIS) Rheinland-Pfalz.) 

For a report of an observation to ArtenFinder’s online portal, an observer has to provide the following 

mandatory information: 

 observer (a user has to be logged in to be able to add an observation, so that this information is 

automatically added to the dataset), 

                                                      
17 © OpenStreetMap contributors; OpenMapSurfer; further data sources used there: CIAT-CSI SRTM, ASTER 
GDEM2, ETOPO1, GeoNames, GlobCover, NaturalEarthData 
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 location (coordinates, provided either by clicking in a map, or typing the coordinates into the 

proper fields, in ETRS89 UTM32 format) 

 species (supported by an automatic suggestion functionality) 

 observation date, and 

 status of the observation (only observations marked as “public” will be validated by experts; 

the alternative is to add the observation to the observer’s private list). 

Optional information includes a remark, the number of individuals observed, and photos of the ob-

served individual and of the setting it was observed in, or an audio recording. There is also an Arten-

Finder app for submitting observations by using a smart phone or other mobile device. It adds an esti-

mation of coordinate precision (based on the GPS precision) to the observation. Beginners or observ-

ers unknown to the validating expert are consistently asked to provide a photo proof with their public 

observations. 

The use of the data in government and administration makes a quality assurance strategy necessary 

which not only ensures a minimum error rate in the data, but which also makes the data credible to 

potential and actual users in government and administration. In some cases, the data even need to be 

justiciable if involved in a trial, e.g. connected to infrastructure planning etc. At ArtenFinder Rhein-

land-Pfalz, the need for this level of quality assurance led to the implementation of a validation regime 

in which each and every public observation is checked by a regional and species group expert, who 

either accepts or rejects it. These experts are organized in a corporation, the KoNat UG (a limited lia-

bility company). Many of them are volunteers with prior experience and occupations in the environ-

mental sector, but also some ArtenFinder volunteers were promoted to validating experts because of 

their experience acquired as ArtenFinder observers.  

All observations which observers release as public observations have initially the status “Under Scru-

tiny”, German “In Prüfung”. Experts have basically three alternatives. The first is to accept the obser-

vation, if they judge it to be probably correct. The second option is to reject it, if there are reasons for 

that. These reasons can be a judgement that the observation is probably wrong, that is, that either the 

location, or the date of observation, or the species identification is judged to be probably incorrect. 

Other reasons may be a missing photo proof (which is only but consistently asked from beginners), or 

a photo proof which does not show important characteristics of the species. There is also the possibil-

ity to put the observation “on hold” (German “pausiert”). In all cases where an observation is put on 

hold or rejected, the observer is informed about the reasons, provided with information on the species 

in question, and is asked for more information which may lead to acceptance. This communication 

also generates a learning effect on the side of the observer. Field excursions with experts, which also 

have a training effect for participants, are frequently offered but are not mandatory for persons who 

want to take part in the project as observers. Online eLearning tools offered on the project’s homep-

age, such as species portraits and dichotomous keys for many species, also support observers in spe-

cies identification. 

The experts’ judgement is based on their knowledge and experience, both regional and for the species 

group they are working on. In many cases, the expert’s knowledge of an observer’s experience and 

reputation also plays a major role in validation decisions. Since early 2016, ArtenFinder’s quality as-

surance process is supported by a plausibility tool which extracts certain information about the candi-

date observation, using currently existing, accepted observations as context, and which provides this 

information back to the validating experts. The tool has four elements. The first evaluates the observ-

er’s experience, based on a record of quality assurance decisions which allows for calculating the rati-

os of accepted and rejected observations for the observer. The second element visualizes the candidate 

observation’s date in light of species observation frequency over the year exposed by previous obser-
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vations of the same species. The third element visualizes spatial proximity of previous observations of 

the same species. Finally, the fourth element provides a list of species observed so far around the can-

didate observation’s location (sorted by observation frequency). Experts can trigger an evaluation by 

the plausibility tool for each observation they check, but it is not mandatory. In practice, the tool is 

considered as a helpful support to the validation process, but has also shown some weaknesses (Jacobs 

& Schotthöfer 2015). One of these concerns the list of species surrounding a candidate: this list is of-

ten very long (depending on the search radius applied and on observation density in proximity to the 

candidate observation) and therefore hard to handle. The list contains species from all species groups. 

A validating expert is usually specialized in one or two species groups. Evaluating all species in the 

list as to their relevance for the candidate species at hand is therefore a task which no single expert is 

able to perform. Also, such a species-by-species evaluation would take up way too much time. There-

fore, this element of the plausibility tool plays almost no role in the verification process (personal in-

formation by D. Frank (KoNat), 07-2017). Depending on the target species and its properties, a valida-

tion decision of an expert is thus mostly based on the observation date and its match with the species’ 

life cycle or temporal migration patterns, the expert’s judgement of the observer’s experience in iden-

tifying the target species, and on the expert’s general knowledge of the spatial distribution of the target 

species within Rheinland-Pfalz. Photo proofs very often play a major role in the expert’s validation 

decision. 

Thematic data properties 

ArtenFinder categorizes species into species groups which represent taxonomic units on different tax-

onomic levels, such as birds (or Aves, a class) and butterflies and moths (or Lepidoptera, an order). 

This categorization was mostly kept in this work. The species groups of spermatophytes and pterido-

phytes were consolidated into the species group ‘plants’, dominated by spermatophyte observations. 

Figure 2.1.3 illustrates that, in accepted observations up to 2016, 43.50% were of birds, followed by 

butterfly and moth observations (27.78%), dragonflies and damselflies (9.48%), and plants (6.48%). 

Overall, plants therefore play a minor role in the ArtenFinder dataset. This is important because the 

ArtenFinder observation data are thus dominated by species which are at least to some degree mobile, 

some (especially many bird species) even to a high degree.  

 
Figure 2.1.3: ArtenFinder, portions of species groups. (Based on Accepted observations in Rheinland-
Pfalz up to 2016). 

Yearly numbers of observations contributed to ArtenFinder have been going up since the project went 

online in 2011 (see Figure 2.1.4). Growth rates have mostly been declining, especially in recent years. 

KoNat is publishing a series of identification guides for species groups. The 2013 appearance of a 



20 2.1 Project and Data Properties 

 

birds guide (Rößner et al. 2013) may have contributed to the accelerated rise of bird observations in 

2014 and 2015. In 2014, the appearance of the guide for butterflies (Schotthöfer et al. 2014) likely 

triggered the observed rise in yearly butterfly observations, but observation numbers dropped back 

down afterwards. The 2017 appearance of a guide for dragonflies and damselflies (Ott et al. 2017) 

caused a rise in observations from this species group in 2017 (personal information by D. Frank, 

KoNat, 07-2017), not represented in Figure 2.1.4, because 2017 data are not represented in the data 

use case. ArtenFinder uses a project-specific list of species which volunteers can report. Species not 

on the list cannot be reported. This list was extended several times since the project went online. At 

the time the ArtenFinder observation data for this work were last downloaded (February 2017), it held 

12,492 species. The list was extended since to hold 16,163 species (as of August 2018). ArtenFinder 

focuses on protected or threatened species, which are especially relevant for uses in government, con-

servation and planning. The project’s species list also holds common and widespread species, but de-

scriptions of some of these species in the project’s eLearning materials contain appropriate notes dis-

couraging observers from reporting such species in ArtenFinder. There also have been several cam-

paigns calling for observations of certain species or species groups which certainly had an impact on 

the species composition of the observation data. In 2011, a call for observations of Stag Beetle (Lu-

canus cervus) produced ca. 600 observations of this large and striking beetle. Another campaign for 

Red Kite (Milvus milvus) observations in the same year (and continued the following years) helped to 

collect more than 4,000 accepted observations of this bird of prey until 2014 (Röller 2015). This cam-

paign made Red Kite the most frequently observed species in the years 2011-2015.  

a) Sum of all species groups 

 

b) Most frequent species groups 

 
Figure 2.1.4: ArtenFinder, yearly numbers of accepted observations 2011-2016. 

The accepted ArtenFinder observations used in this work were reported by 1,342 different observers. 

Typically for crowdsourcing projects, the level of observation activity per user, in this case measurable 

as the number of accepted observations contributed to the project, shows a high concentration on few 

very active observers, while most contributed very little. Table 2.1.1 shows the distribution of Arten-

Finder observations per user for all users who contributed at least one public, accepted observation in 

the years 2011 to 2016. Numbers are based on the date of observation, which represents the date of the 

actual observation activity, not of the submission to the ArtenFinder portal.  
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Table 2.1.1: ArtenFinder, number of accepted observations per user. (Based on active users in 2011-
2016 with at least one public, accepted observation.) 

No. of observations 
per observer 

No. of observers % of observers % of observations 

10,000 and more 6 0.45 39.37 
1,000 to 9,999 41 3.05 46.45 
100 to 999 95 7.07 10.44 
10 to 99 281 20.92 2.96 
1 to 9 920 68.50 0.78 

The development of the number of active observers per year (users who contributed at least one pub-

lic, accepted observation in a given year) is visualized in Figure 2.1.5. It is interesting to note that 

2012, the second year of the ArtenFinder project, saw a maximum of 646 observers submitting obser-

vations which were accepted, while numbers of active observers have been dropping since then. The 

2012 maximum was probably boosted by campaigns asking observers to report sightings of Red Kite 

and of Stag Beetle (see also above). The campaigns were quite successful and motivated hundreds of 

citizens to take part18. However, many observers contributed just one or a few observations to the 

campaign, but did not become long-term observers in the ArtenFinder project. For instance, 199 users 

reported one sighting of Red Kite or Stag Beetle in 2012, but did not contribute any more after that.  

 
Figure 2.1.5: ArtenFinder, number of active observers. (Based on users with at least one public, ac-
cepted observation per year). 

Spatial data properties 

ArtenFinder data used in this work have an overall density of 14.4 accepted observations per square 

kilometer. However, one of the most important characteristics of the dataset is a pronounced inequality 

in spatial distribution of observations which follows roughly a northwest to southeast trend of increas-

ing observation density. This trend can easily be visualized by a quadrat count map, as shown in Figu-

re 2.1.6.  

                                                      
18 https://artenfinder.rlp.de/node/3, last accessed on 2017-07-13 
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Figure 2.1.6: Regional differences in the density of accepted ArtenFinder observations. (Based on 
observations up to and including 2016. Classified by Natural Breaks. Source of Rheinland-Pfalz state 
line: LANIS Rheinland-Pfalz.) n = 284,962. 

Box 1: A Note on the Modifiable Areal Unit Problem 

The quadrat count map in Figure 2.1.6 is subject to the modifiable area unit problem (MAUP, a well-

known problem discussed in detail, for example, in O’Sullivan & Unwin 2010), and so are all follow-

ing maps of this kind in this work. Choosing different quadrat sizes and positions would modify the 

outcome. Also, edge effects were not corrected, so that quadrats at the margins of the area of interest 

underestimate density because they contain areas outside of the area of interest. However, these maps 

are used to visualize only general spatial trends in observation distribution. The drawbacks of these 

map types are therefore considered to be of minor importance, but should be kept in mind when read-

ing these maps. Regular grids are also a common means of visualizing spatial distributions of species 

in so-called distribution atlases (e.g., Wink 1987, Ebert & Rennwald 1991, Netzwerk Phytodiversität 

Deutschland e.V. & Bundesamt für Naturschutz 2013). In Germany, a standard for quadrat size and 

position of such grids is the ca. 10x10 km size and sheet line system of the official topographic maps 

of scale 1:25,000. The grid used here for ArtenFinder observation density maps has the same width. 

However, it does not follow the sheet line system of this map series, but was specifically created for 

this work to fit Rheinland-Pfalz state borders. The same considerations apply to California observation 

density maps in this work (e.g., section 2.1.2). MAUP is also present in choropleth maps (e.g., Figure 

2.1.7). 

Comparison of spatial density of ArtenFinder observations with population density in Rheinland-Pfalz 

(Figure 2.1.7) shows that there is an impact of the latter on the former in ArtenFinder observation data, 

but that other factors are also important. Higher observation density in the southeastern part of the 

state coincides with somewhat higher population density when compared to the northwest of the state, 

where both observation and population density are low. However, relatively high population density in 

the north of the state is not reflected in the spatial distribution of observation data at all. A probable 

cause is that the ArtenFinder project was initiated and is closely cooperating with Pollichia e.V., an 



2.1 Project and Data Properties  23 

association for natural history research which is active mostly in southern Rheinland-Pfalz. Many Ar-

tenFinder volunteers are members of this association. 

 
Figure 2.1.7: Regional differences in population density in Rheinland-Pfalz. State of population data: 
2016. (Classified by Natural Breaks. Source of Rheinland-Pfalz state line: LANIS Rheinland-Pfalz. 
Source of county borders: Landesamt für Vermessung und Geobasisinformation Rheinland-Pfalz19. 
Source of population data: Statistisches Landesamt Rheinland-Pfalz).  

Embedded in the spatial trend in observation density described above, we find a pronounced clustering 

of observations. It is caused by some of the principle biases which are inherent in almost all casual 

citizen science datasets from the biodiversity domain. Observations cluster at places where observers 

are, or where they go. These include recreational areas, but also traffic routes (including footpaths, 

hiking trails etc.), settled areas, and local biodiversity hotspots such as conservation areas, water bod-

ies, and the like. Clustering of observations is clearly visible in a dot map of spatial observation distri-

bution (Figure 2.1.8). There are several approaches to statistically assess the clustering in spatial dis-

tributions of points (O’Sullivan & Unwin 2010). One of the more elaborate methods to test whether a 

point pattern shows a tendency towards clustering uses the so-called L function (for details about this 

method see O’Sullivan & Unwin 2010 and Baddeley et al. 2015). Stationarity of the examined point 

process is required for the L function to perform properly as a method to find out whether a point pat-

tern is “consistent with” clustering (a wording proposed by Baddeley et al. 2015, p. 207). This is not 

the case over the whole ArtenFinder project region. Therefore, two data windows were selected. Fig-

ure 2.1.9 shows the empirical L function (based on the actual observation points) and the theoretical L 

function for a Poisson process (i.e., with points distributed randomly in space), for both data windows 

indicated in Figure 2.1.8 (calculated with R’s “spatstat” package, with edge effect correction, duplicate 

points removed from the pattern). For the northern data window, the process can be considered to be 

close to stationary and the data are clearly consistent with clustering (see notes on this procedure in 

Box 2). It is important to stress that results of the L function analyses presented here are dependent on 

the position and size of the data windows employed. Changing size and/or position would lead to dif-

ferent results. This is illustrated by Figure 2.1.9b showing the empirical L function and the theoretical 

                                                      
19 ©GeoBasis-DE / LVermGeoRP 2018, dl-de/by-2-0, www.lvermgeo.rlp.de [Data modified] 
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L function for a Poisson process, for the southern data window indicated in Figure 2.1.8. Following 

the discussion in Baddeley et al. 2015, this graph may provide evidence that the point process is not 

stationary within the southeastern data window. With all due caution however, we can say that accept-

ed observations in ArtenFinder concentrate at certain localities, that these concentrations have differ-

ent sizes with a spatial trend towards larger concentrations in the southeast of the project region. For 

the behavior of the potential plausibility indicators examined here, it is not important to formally prove 

that the data are clustered. It is, however, of importance that observations concentrate locally. This is 

undoubtedly the case. 

 
Figure 2.1.8: Dot map of ArtenFinder observations. Red rectangles: windows used for calculation of 
L functions (see text and Figure 2.1.9). (Source of Rheinland-Pfalz state line: LANIS Rheinland-Pfalz.) 

Box 2: A Note on L Functions 

L functions are a modification of the K function, a method introduced by Ripley (1976), to determine 

whether a point pattern tends towards clustering, whether its points are evenly distributed, or whether 

they are randomly distributed. The underlying principle is counting points within a radius around a 

point, to do so for all points in the pattern and for successively growing radii, and to see whether the 

mean number of points in the radius is smaller or larger than expected for a random point pattern. If it 

is larger for relatively small radii, the point pattern is probably clustered. In this case, the graph of the 

empirical L function (based on the actual point pattern) initially takes a course above the graph of the 

theoretical L function, converging back to the theoretical L function for larger radii. One important 

assumption for this method is that the point process’ intensity is homogeneous throughout the whole 

pattern examined (Baddeley et al. 2015). 
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a) Northern data window 

 

b) Southern data window 

 
Figure 2.1.9: ArtenFinder, empirical and theoretical L functions for the data windows indicated in 
Figure 2.1.8. Black line (Lobs(r)): empirical L function. Red dashed line (Ltheo(r)): theoretical L func-
tion for a Poisson process. The gray envelope shows the global max. (Lhi(r)) and min. (Llo(r)) devia-
tions from the theoretical L function, using 100 simulated realizations of complete spatial randomness. 
r = radius in m. Duplicate points (points with identical coordinates) were removed for this calcula-
tion. 

2.1.2 iNaturalist 

The project and its area of interest 

Like ArtenFinder Rheinland-Pfalz, iNaturalist provides a web portal and an app for collecting observa-

tions of organisms from the general public. The project began as part of a master thesis at UC Berke-

ley, was formally organized in 2011, adopted by the California Academy of Sciences in 2014, and is 

also a joint initiative with National Geographic Society since 201720. In contrast to the ArtenFinder 

project, iNaturalist has a worldwide scope, but, as an American initiative, has a pronounced focus on 

the U.S. (which produce ca. 80% of observations) and especially California (with ca. 30% of U.S. 

observations). California (see Figure 2.1.10 and Figure 2.1.11) was therefore selected as the area of 

interest for the iNaturalist data use case.  

In iNaturalist, verification of data, especially correctness of species identification, is exclusively gov-

erned by mutual confirmation or disagreement within the community of volunteers. In fact, species 

identification by the observer is not a mandatory part of an observation submission. Species identifica-

tion can be entirely left to the community. Due to the nature of casual citizen science observations of 

organisms (which will be discussed in detail in section 2.2) this is, of course, only possible if sufficient 

evidence is attached to an observation, usually in the form of photographs. iNaturalist observations can 

therefore exist in three different quality grades: “casual”, “Needs ID”, and “Research Grade”. A “cas-

ual” observation misses one or more of the information components required for an observation to be 

considered verifiable (and to eventually become research grade). In most cases, such records do not 

provide evidence in the form of photographs. An observation which is submitted with a location, a 

date, and photo or sound evidence, has the category “Needs ID”. This happens regardless of whether 

the observer provided a species guess or not. Other members of the iNaturalist community can then 

                                                      
20 https://www.inaturalist.org/pages/about, last visited 2018-09-13 
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add their own species identifications, in agreement or disagreement with the record’s observer or other 

persons. “Research grade” status will be reached if and when two thirds of the people involved agree 

on the same species-level identification. Agreement can also be reached on higher taxonomic levels, 

which will give the record a community identification, but will usually not lead to research grade sta-

tus. For research grade, there need to be at least two concordant species identifications (e.g., the ob-

server’s and one other person’s). With the “identotron”, iNaturalist provides a tool for looking up 

checklist information and existing observations for an observation location to help observers with spe-

cies identification and to support co-observers in confirming species identifications. The portal also 

provides general information on species from wikipedia, range maps, taxonomy, conservation status 

from the IUCN Red List and other organizations, and references to physically similar species. 

 
Figure 2.1.10: Geographic situation of the U.S. state of California. Area: 423,970 km2. (Source of 
national and state boundaries: ESRI21. 

Technically, there is no mandatory information that an observation submitted to iNaturalist must carry. 

Volunteers trying to submit observations without a date or location are warned about this fact, but can 

choose to go on. Species identification by the community is an important part of the project concept of 

iNaturalist. It is therefore o.k. for a volunteer to submit observations without specifying a species 

name. Identification by the community, of course, needs evidence. Submission of one or more photos 

with a report is therefore strongly encouraged. For instance, to start the submission process of observa-

tions via the online portal in its current state, a volunteer first has to select the photographs belonging 

to the observations he or she wants to submit. Photos can be removed before final submission, so that 

records without photos can exist, but these records then cannot become research grade, even if many 

participants agree on the species identification (which is, of course, improbable anyway without prop-

                                                      
21 Portions of this document include intellectual property of ESRI and are used herein by permission. Copyright 
© 2018 Environmental Systems Research Institute, Inc. All Rights Reserved 
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er evidence). Photos are therefore a very important element in iNaturalist, to the point that some au-

thors call it a photo sharing platform (e.g., Jackson et al. 2015).  

 
Figure 2.1.11: California, topographic overview. (Source of base map: OpenStreetMap22. Source of 
state line (black): U.S. Geological Survey 2016.) 

This has, of course, an important impact on the selection of species which are reported to iNaturalist 

and on the type of observations which can reach research grade. Species reported to iNaturalist will 

predominantly be species which are suitable for photography, and species reaching research grade will 

be those whose most important and characteristic features can be recognized from a photograph. An 

observation even of the most skilled of volunteers and with a very plausible location and observation 

date cannot reach research grade if it does not provide photographic evidence. Alternatively, a sound 

                                                      
22 © OpenStreetMap contributors; OpenMapSurfer; further data sources used there: CIAT-CSI SRTM, ASTER 
GDEM2, ETOPO1, GeoNames, GlobCover, NaturalEarthData, Scripps Institution of Oceanography, UC San 
Diego 
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recording can be submitted, but this is as yet very rare in iNaturalist observations; as of August 8th 

2017, there were only 7,298 observations carrying a sound recording in iNaturalist (1,594 also having 

one or more photos), 5,504 of which had reached research grade, 679 of them in California, 481 ob-

served 2016 or earlier and thus part of the data used here. For many species, it is very hard or not at all 

possible to provide conclusive evidence for species identification in a photograph. These species are 

virtually excluded from the research grade data pool produced by the project. 

Thematic data properties 

To be comparable to ArtenFinder data, iNaturalist species were grouped into the species groups used 

in the ArtenFinder project (see section 2.1.1). Project properties described above may be responsible 

for a distribution of observations in species groups which is markedly different from ArtenFinder 

Rheinland-Pfalz (see Figure 2.1.12). Most research grade observations are of plants at 33.63%. Birds 

(which are leading the ArtenFinder record) rank a close second (29.72%). Other species groups make 

up much smaller portions of the data: Butterflies and moths, mollusks and reptiles follow at 5.12-

6.47%, mammals at 4.06%. Overall, the iNaturalist dataset is thus strongly dominated by two species 

groups (with plants and birds making up over 60% of the data), while in the ArtenFinder dataset where 

nearly 50% of observations are of birds. Plants leading the iNaturalist record may be a consequence of 

the importance of providing photographs with observations, which are, of course, much more easily 

taken of sessile organisms, but there may be other reasons. Birds are generally popular with observers, 

in most projects 

 
Figure 2.1.12: iNaturalist, portions of species groups. (Based on research grade observations from 
California up to 2016). 

Figure 2.1.13 shows the development of yearly numbers of research grade observations. Numbers 

have been going up, as has the growth rate in yearly research grade observations. The development 

shows that growth rates of yearly research grade observations are also highest for plants and birds.  
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a) Sum of all species groups b) Most frequent species groups 

 
Figure 2.1.13: iNaturalist, yearly numbers of accepted observations 2011-2016.  

iNaturalist currently has over one million users signed up (as of 2018-12-19; current numbers are pub-

lished continuously on the project site start page). Table 2.1.2 shows the usual concentration of obser-

vation and reporting activity on a small portion of all users, in this case for all users having contributed 

at least one research grade observation in California in 2011-2016. Concentration of observations on 

observers is even stronger than in the ArtenFinder dataset: portions of observers with high observation 

numbers are smaller and those of observers with low observations numbers larger, respectively. Re-

porting observations is not the only possible form of contribution in iNaturalist. Adding species identi-

fications to observations contributed by other observers is another important form of activity, which is 

not reflected in observation numbers per user. Numbers of iNaturalist observers contributing observa-

tions in California are growing fast, see Figure 2.1.14. In contrast to ArtenFinder, growth rate was still 

accelerating in 2016. 

Table 2.1.2: iNaturalist, number of research grade observations per user. (Based on active users in 
California in 2011-2016 with at least one research grade observation). 

No. of observations 
per observer 

No. of observers % of observers % of observations 

10,000 and more 2 0.02 8.59 
1,000 to 9.999 64 0.50 44.42 
100 to 999 340 2.67 23.82 
10 to 99 2448 19.22 16.36 
1 to 9 9881 77.59 6.82 
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Figure 2.1.14: iNaturalist, number of active observers in California. (Based on users with at least one 
research graded observation per year.) 
 

 
Figure 2.1.15: Regional differences in the density of research grade iNaturalist observations in Cali-
fornia. (Classified by Natural Breaks. Source of state line: U.S. Geological Survey 2016.) 
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Spatial data properties 

California has 0.97 research grade iNaturalist observations per square kilometer. This number was 

calculated using the state area value of 423,970 km2 given in the attributes of the state line in the 

USGS National Boundary Dataset (U.S. Geological Survey 2016). These data include the US State 

Submerged Lands (a maritime zone of 5.57 km width) along the pacific coast. Only seven observa-

tions used in the observations dataset are located in the sea outside of this zone. The map in Figure 

2.1.15 visualizes observation density in a quadrat count map. For this map (and all following maps of 

this kind in this work) the same considerations concerning MAUP apply which were already discussed 

for the according Rheinland-Pfalz maps in section 2.1.1 (see Box 1). A larger grid size of 20x20 km 

was chosen for California maps, to maintain readability at smaller scale. iNaturalist research grade 

observations concentrate in roughly two regions, around San Francisco and around Los Angeles. 

Large parts of California have rather low observation densities, with lowest concentrations in south-

eastern and northern California, as well as in the southwestern Long Valley, where large areas can be 

found which do not have research grade observations at all. In contrast to ArtenFinder data from 

Rheinland-Pfalz, spatial distribution of iNaturalist observations fits the pattern of population density of 

California (Figure 2.1.16) quite well.  

 
Figure 2.1.16: Regional differences in population density in California. (Classified by Natural Breaks. 
Source of state line and county borders: U.S. Geological Survey 2016. Source of population data: U.S. 
Census Bureau 2012.)  
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Like ArtenFinder data, California iNaturalist observation data show clustering, for the same reasons 

(see section 2.1.1). Again, clustering of observations is clearly visible in a dot map of observations 

(Figure 2.1.17). Figure 2.1.18 shows empirical L functions and theoretical L functions for a Poisson 

process, for the areas drawn in red in figure 3.1.21 (again, calculated and plotted using the R’s 

“spatstat” package, with edge effect correction, duplicate points removed from the pattern). They indi-

cate that the point pattern is consistent with clustering (Baddeley et al. 2015) within the test areas (test 

areas were again chosen for approximate stationarity of the observation process within these areas, 

which is not the case for the point pattern as a whole). Again, it is important to stress that results of the 

L function analyses presented here are dependent on the position and size of the data windows (test 

areas) employed. Changing size and/or position would lead to different results. However, the test re-

sults presented here are able to indicate a tendency towards clustering, which is an important property 

of the iNaturalist data used in this data use case. See also section 2.1.1, Box 2 for some notes on the 

principle underlying the L function. 

 
Figure 2.1.17: Dot map of iNaturalist observations in California. Red rectangles: windows used for 
calculation of L functions (see text and Figure 2.1.18). (Source of state line: U.S. Geological Survey 
2016.) 
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a) Northern data window 

 

b) Southern data window 

 
Figure 2.1.18: iNaturalist, empirical and theoretical L functions for the data windows indicated in 
Figure 2.1.17. Black line (Lobs(r)): empirical L function. Red dashed line (Ltheo(r)): theoretical L func-
tion for a Poisson process. The gray envelope shows the global max. (Lhi(r)) and min. (Llo(r)) devia-
tions from the theoretical L function, using 100 simulated realizations of complete spatial randomness. 
r = radius in m. Duplicate points (points with identical coordinates) were removed for this calcula-
tion. 

2.1.3 OpenStreetMap 

The project 

The OSM project, its history, goals, and general properties have been described in a large number of 

publications (e.g., Neis & Zipf 2012, Budhathoki & Haythornthwaite 2013, Neis & Zielstra 2014). 

Only the most important facts will therefore be reiterated here, but more will emerge in the discussion 

following this overview (section 2.2). 

Founded by Steve Coast, the OSM project started out in 2004 at University College London. The pro-

ject was soon organized in a foundation and gained worldwide scope. Creating a new object in OSM 

basically requires the same steps as in iNaturalist or ArtenFinder, namely creating a geometry object 

and adding attribute information to it in the form of tags. Tags are pairs of a key and a value, e.g. 

“highway=residential”. At first, contributions were mainly based on GPS tracks collected by volun-

teers in the field, but modes of data production changed when several Internet companies and public 

authorities provided satellite and aerial imagery for tracing objects for OSM (Neis & Zielstra 2014). 

Besides contributions by individual volunteers, OSM data are sometimes also created by bulk imports 

of geographic data from open data sources. For the data used here, the most important of these imports 

occurred in 2008, adding to OSM parts of the U.S. census bureau’s TIGER (Topologically Integrated 

Geographic Encoding and Referencing) data23, such as roads, railroads, and administrative boundaries, 

but also statistical geographic areas (Zielstra et al. 2013). 

OSM’s quality assurance strategy is a classic example of what Goodchild & Li (2012) call the “crowd-

sourcing approach”, which means that quality control is placed in the hands of the community of vol-

unteers, and based on the principle that errors cannot persist if many volunteers work on the data and 

                                                      
23 https://www.census.gov/geo/maps-data/data/tiger.html, last accessed on 2018-09-20 
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eventually correct errors other volunteers might have made. OSM’s quality assurance strategy is there-

fore closely related to iNaturalist’s, where the community of observers reviews, comments, confirms, 

or contradicts the information given in an observation record (especially species identification), albeit 

with important differences concerning the nature of information, which will be discussed in section 

2.2. It is, however, in strong contrast to ArtenFinder’s quality assurance strategy, which employs privi-

leged experts who validate observations, while normal users are not able to comment directly on other 

observers’ reports. 

Thematic data properties 

Thematic information in OSM is represented by tags in the form of key-value pairs, see above. The-

matic information in OSM is different and also more varied in nature than observations of organisms. 

This makes describing relevant thematic properties of OSM data more complex, compared to describ-

ing properties of biodiversity observation data. For instance, an observation of a species has just one 

species identification, belonging to just one species group (e.g., a bird or a butterfly). It is therefore 

straightforward to aggregate data by calculating portions of observations belonging to a certain species 

group. An OSM element, on the other hand, may carry several tags at the same time. Analyzing the 

thematic properties of the OSM data used in this work requires some form of aggregation (analog to 

aggregation by species group), which was done by key. The data structure explained here must be kept 

in mind when interpreting statistics describing these data. Also, not all available OSM tags were used 

in this work, but only tags holding information which was judged relevant for the intended use of 

OSM information as a geographic context source. Details are explained in the Methods chapter, sec-

tion 3.3.4, and tags selected as relevant listed in the appendix, section 7.2. The following analyses 

refer only to the data carrying these selected tags. 

The Heidelberg Center for Geoinformation Technology (HeiGIT24) provides a service called the 

Ohsome API25. One of its functionalities is counting, in a set of OSM elements, the elements which 

carry a certain tag. This tool was used to examine the thematic properties of OSM data in the two areas 

of interest concerning the relevant tags used in this work. Due to the fact that an OSM element may 

carry several relevant tags at the same time, the basic population of such a count is not the number of 

elements, but the number of occurrences of tags (where some elements are counted several times). 

This count is able to convey some information on which tags can be encountered more often in the 

data than others. This is what Figure 2.1.19 tries to do. It shows a dominance of “building=*” and 

“highway=*” tags in all relevant tag occurrences in both Rheinland-Pfalz and California OSM data. 

Rheinland-Pfalz data also have notable portions of “surface=*” (mostly of some kind of highway, 

street or path), “landuse=*”, “natural=*”, “amenity=*”, “barrier=*”, and “waterway=*” tags. In Cali-

fornia OSM data, “waterway=*” tags are more prominent than in Rheinland-Pfalz, and a relatively 

high portion of “intermittent=*” tags (all of them “intermittent=yes”) reveal seasonally dry conditions 

in large parts of California. “landuse=*”, “natural=*”, and “surface=*” tags make up relatively small 

portions of all tags here. 

  

                                                      
24 https://heigit.org/ 
25 https://api.ohsome.org/v0.9 
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a) Rheinland-Pfalz

 

b) California

 
Figure 2.1.19: Portions of the most frequent keys in OSM extracts from Rheinland-Pfalz and Califor-
nia. State of OSM: 2017-07-01. n(a, occurrences of tags) = 2,380,703. n(b, occurrences of tags) = 
9,071,835. (Analysis includes only tags used in this work.) 

Figure 2.1.20 shows the development of yearly numbers of tags added to OSM (aggregated by keys as 

well). While most tags were added at steady and rather low rates to the Rheinland-Pfalz OSM, “high-

way=*” tags declined steadily from relatively high rates. “building=*” tags experienced a strong in-

cline peaking in 2015 with a much higher rate than the other keys, and have declined since. The Cali-

fornia extract of OSM data shows a more recent increase in “building=*” tags. “waterway=*” tags 

were mostly added before 2012-07-01, followed by “intermittent=*” tags. “highway=*” tags experi-

enced a raise in recent years. Another difference to Rheinland-Pfalz data is that negative numbers oc-

cur, that is, a net removal of “intermittent=*” and “landuse=*” tags from the data in some years. 

a) Rheinland-Pfalz b) California

 
Figure 2.1.20: Yearly net numbers of tags from the most frequent keys added to OSM elements in 
Rheinland-Pfalz and California. (Analysis includes only selected tags used in this work). 

However, caution has to be used with these analyses. Difficulties are introduced by the complex geo-

metrical nature of OSM data, which consist of point elements (“nodes”), line elements (“ways”) and 

polygon elements (represented by some closed “way” objects or some “relations”). While “node” ele-

ments have properties which are comparable to point objects, ways and relations may or may not be 

segmented into a larger or smaller number of geometric objects. For instance, a highway may be rep-
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resented in relatively long segments of several kilometers of length, or be split into many relatively 

short segments of just a few tens of meters. The latter case boosts tag counts in the above statistic. 

Also, buildings are relatively small and many, and consequently represented by many small, individual 

geometric elements, while land use units are usually relatively large and often also represented by 

large geometric elements in the map, boosting tag counts for the “buildings” key relatively to that of 

the “landuse” key. It makes sense, therefore, to also look at other ways of examining thematic data 

properties, especially by using area or length instead of counts, but always keeping in mind that a sin-

gle element may carry several relevant tags and sums of areas or lengths incorporate overlaps, themat-

ically as well as geometrically. This view on the data was implemented by looking only at elements of 

type way and relation and by looking at the most important keys representing mostly polygon ele-

ments. Figure 2.1.21 presents results. They may contain thematic overlaps between elements: a poly-

gon my carry tags from several of the relevant keys and may therefore be contained in several of the 

area sums per key. Also, a polygon may carry several tags of the same key and may therefore be con-

tained several times in the area sum for a key. The same considerations apply to linear objects which 

were examined by using lengths of way type elements of the most important keys representing mostly 

linear elements. Results ae presented in Figure 2.1.22.  

Results of area calculations for Rheinland-Pfalz show that “landuse=*” tags, not very prominent in 

element counts, are by far the most important in terms of coverage of area, while tags which were 

prominent in element counts, especially “building=*”, are less important. Results with California 

OSM data are similar: “landuse=*”, “leisure=*” or “natural=*” tags cover large areas, while “build-

ing=*” tags (and others) are insignificant. In element length results for Rheinland-Pfalz and for Cali-

fornia, keys are prominent which also reached high tag count results, such as “highway=*” or “water-

way=*”.  

a) Rheinland-Pfalz 

 

b) California 

 
Figure 2.1.21: Area of OSM elements, aggregated by keys, in Rheinland-Pfalz and California. (Sums 
of areas of way and relation elements, no correction for thematic and geometric overlaps). State of 
OSM: 2017-07-01. (Analysis includes only selected tags used in this work.) 
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a) Rheinland-Pfalz b) California 

 
Figure 2.1.22: Length of OSM elements, aggregated by keys, in Rheinland-Pfalz and California. 
(Sums of length of way elements, no correction for thematic and geometric overlaps). State of OSM: 
2017-07-01. (Analysis includes only selected tags used in this work.) 

Numbers of active mappers were more or less constant in Rheinland-Pfalz in the years the OSM data 

used here were produced, with a rise in mapper numbers in earlier years and a slight drop towards later 

years (see Figure 2.1.23). In California, numbers of mappers have been rising constantly and have 

recently reached numbers comparable to Rheinland-Pfalz, but in a far larger area with a much higher 

population. In absolute numbers, participation in OSM is far superior to numbers of volunteers in Ar-

tenFinder and iNaturalist. The fact that in OSM, just as in all VGI projects, a small portion of volun-

teers is responsible for most of the contributions, has been found and documented by many research 

works on OSM data (e.g., Neis & Zipf 2012). It can certainly be expected for the OSM data used in 

this work as well and was not examined here in detail.  

a) Rheinland-Pfalz b) California

 
Figure 2.1.23: Numbers of active OSM mappers per year in Rheinland-Pfalz and California. (For 
technical reasons, only node and way objects were evaluated here.) 
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Spatial data properties 

Spatial properties of OSM data cannot be described in the same way as spatial properties of casual 

citizen science observation data, due to reasons already explained, which are rooted in the OSM data’s 

complex data structure. It is, of course, possible to count numbers of occurrences of a tag in an area, 

but the sum of these counts over all tags will be larger than the number of objects involved, because 

any object may carry more than one tag (and many do). A density map of this kind may still convey 

some relevant information about spatial properties of OSM data and is represented in Figure 2.1.24 

(parts a and c). Keep in mind, however, that counts of tags depend on the structure of the objects 

which carry them, as was already explained above. If a tag is attached to strongly segmented objects, 

this will raise its count. This effect can be avoided by looking at the number of distinct tags in an area, 

a parameter which represents spatial information density, rather than actual density of geometric ob-

jects or tag occurrences. This is represented in Figure 2.1.24 as well (parts b and d). 

Parts a and c of Figure 2.1.24 illustrate the well-known fact that OSM data tend to concentrate in ur-

ban areas (e.g., Haklay 2010). In both areas of interest, counts of tag occurrences very distinctly high-

light the most important urban centers, such as Mainz, Ludwigshafen, Kaiserslautern, Trier and Ko-

blenz in Rheinland-Pfalz, and San Francisco and Los Angeles in California. Maps of spatial infor-

mation density (number of distinct tags in a region) do the same, but high-value regions include areas 

adjoining urban centers, and smaller cities also stand out, such as Landau or Neustadt an der Wein-

straße in Rheinland-Pfalz, and San Diego, the Indio/Palm Springs area, Oxnard/Ventura, Santa Barba-

ra, San Louis Obispo/Grover Beach, and Sacramento in the Long Valley in California. Contrast is 

weaker here, because spatial information density is still higher in urban centers, but contrast to other 

areas is not so strong in this parameter. However, spatial properties are basically the same with both 

parameters.  

In Rheinland-Pfalz OSM data, there is no pronounced spatial trend like it was found in observation 

data. OSM data therefore are possibly able to provide sufficient geographic context for plausibility 

estimation also in regions of Rheinland-Pfalz where observation data are scarce. California OSM data, 

however, show a pattern which is quite similar to iNaturalist observation data spatial distribution, with 

concentrations in the San Francisco Bay and Los Angeles areas in both tag count and spatial infor-

mation density. The latter parameter does also show (smaller) areas with higher values outside these 

areas. 
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a) Rheinland-Pfalz, tag occurrence counts  
(n(tag occurrences) = 2,427,361) 

b) Rheinland-Pfalz, spatial information density 
(distinct tags per region) (n(tags) = 534) 

 
c) California, tag occurrence counts 
(n(tag occurrences) = 9,178,991) 

d) California, spatial information density  
(distinct tags per region) (n(tags) = 550) 

 
Figure 2.1.24: Spatial distribution of OSM tags in Rheinland-Pfalz and California. (Classified by Nat-
ural Breaks. Source of Rheinland-Pfalz state line: LANIS Rheinland-Pfalz. Source of CA state line: 
U.S. Geological Survey 2016.) 
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2.2 Comparative Discussion of Projects and Data Use Cases: Com-
mon Ground and Important Distinctions 

The previous sections presented project properties, as well as the thematic and spatial properties of the 

data produced by ArtenFinder, iNauralist, and OSM. What are the most important aspects of common-

ality of these different kinds of VGI projects and their data, and where do they differ in important 

ways? What are the consequences which have to be taken into account when using these projects and 

their data? Comparison of the projects used in this work, and comparison of their data, is an effective 

way of revealing more of their properties of critical importance to this work and to deepen the under-

standing of geographical citizen science and VGI in general.  

Both ArtenFinder and iNaturalist are dedicated to opportunistic data collection, producing so-called 

casual observation data (see section 1.3). OSM is very similar in this respect. Besides a general 

agreement among the members of the mapping community as to the kind of information which should 

be included in OSM, volunteers are not bound to any temporal, spatial, or other restrictions concerning 

their contribution activities. This is a very important common characteristic of the projects discussed 

here. The contributors and their behavior and choices are major factors which determine the properties 

of the data produced in this way. Probably the most important consequences of this are issues of spa-

tial, temporal, and thematic completeness in the data which are the effect of several biases. They were 

briefly reviewed and some aspects further examined in Jacobs & Zipf (2017). Useful overviews and 

discussions of the major biases occurring in opportunistic citizen science observation processes are 

presented, among others, by van Strien et al. (2013) and by Isaac & Pocock (2015).  

Volunteers taking part in casual citizen science observation projects usually do not, either individually 

or collectively, generate a regular pattern of sites from which observations are contributed. Also, sites 

are not distributed randomly. Several factors determine the volunteers’ choice of locations for observa-

tion activity. Among these are the places of residence of observers and also, more generally, popula-

tion density (Dennis et al. 1999), both clearly visible in the spatial distribution of ArtenFinder and 

iNaturalist data (discussed in sections 2.1.1 and 2.1.2). Observers are also attracted by locations which 

feature rare or uncommon species, or a high biodiversity providing the opportunity to observe many 

different species (Dennis & Thomas 2000). Such effects lead to what van Strien et al. (2013) call geo-

graphic bias, resulting in uneven spatial coverage (Isaac & Pocock 2015). In the absence of standard-

ized field protocols, there will usually also be variance in the amount of time and in the size of an area 

a volunteer will cover in an observation activity (also called effort), resulting in so-called observation 

bias (van Strien et al. 2013). Another bias listed by van Strien et al. (2013), so-called reporting bias, is 

caused by the fact that many observers tend to be selective in which observations they actually report, 

and which they don’t. Observers tend to concentrate on certain species groups, such as the very popu-

lar birds, or on rare or uncommon species, neglecting unpopular species groups or common species. 

This produces a taxonomic bias in the resulting data, an effect which Troudet et al. (2017) show not to 

be specific to citizen science data. However, it can be traced very well in the data use cases of this 

work. For instance, in ArtenFinder observation data up to 2015, 75% of observers with at least 100 

observations contributed 50% or more of their observations from one species group, predominantly 

from birds or butterflies. iNaturalist observers are somewhat less specialized, with 68% of observers 

with 100 or more observations up to 2015 reporting predominantly one species group, most of them 

plants (followed by birds). Reporting bias may also arise from project properties, e.g., requirement of a 

photo proof, which excludes species for which it is difficult or impossible to provide it. Finally, not all 

species are equally easy to detect. This factor may even change in a species with seasons and life cy-

cle. For instance, many insects, such as butterflies or dragonflies, are much easier to be found as ima-

gines (fully developed adults) than as larvae. Many songbirds sing predominantly during their breed-
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ing season and are then much easier to detect than at other times of the year. Then of course, whole 

groups of species, although present at a location, are hard to be found at all times, due to behavior, 

habitat preferences, or simply size. Detection bias (van Strien et al. 2013) is therefore also an im-

portant factor for species composition of casual citizen science observation datasets. Closely related is 

the problem of difficulty of species identification. Many species require special techniques and meth-

ods for identification, which cannot be easily learned or used by non-professional observers (Isaac & 

Pocock 2015). Uneven sampling over time is another important bias in biodiversity observation data 

pointed out by Isaac & Pocock (2015), caused by rising yearly numbers of observations which have 

been collected over the last decades. This effect was also found within the relatively recent ArtenFind-

er and iNaturalist datasets used in this work. It should be noted that the biases described here are not 

restricted to casual citizen science. Williams et al. (2002) cite examples for spatial distributions of 

museum collection data which represent road or river networks, because these structures provide ac-

cessibility, and therefore these data show geographic bias as well. They also discuss cases of observa-

tion bias in these data. Boakes et al. (2010) provide more examples from museum collection data, but 

also from other sources, such as species distribution atlases and scientific literature on biodiversity.  

Most factors described for casual citizen science data also take effect on OSM data. The most im-

portant of these is probably geographic bias, which results mainly in spatial inhomogeneity of com-

pleteness of OSM data and which was extensively examined in a large number of studies. Neis and 

Zielstra (2014) review most of these, which found OSM data to be much more complete in urban areas 

than in rural areas in several European countries. As already discussed in section 1.3, most studies 

used the road network as a completeness indicator and compared OSM data to some official or com-

mercial dataset (e.g. Haklay 2010; Zielstra & Zipf 2010; Neis et al. 2011). Another study from the 

U.S. found a contrary trend for Florida (Hochmair 2011), which was interpreted as an effect caused by 

the TIGER bulk data import (see also section 2.1.3). OSM data of California, used in this work, seem 

rather to concentrate in population centers (see section 2.1.3). The bottom line for both casual citizen 

science projects and OSM is that the manner of data acquisition in the absence of strict protocols leads 

to biases in the resulting data, especially in their spatial distribution, which, as we will see later, is of 

some importance for this work. 

More common ground of OSM, iNaturalist and ArtenFinder emerges when we look at the statements 

that these projects provide about their visions concerning the data they produce. OSM states that “We 

started it [the OSM project] because most maps you think of as free actually have legal or technical 

restrictions on their use, holding back people from using them in creative, productive, or unexpected 

ways”26. This statement reveals that there are no predefined data uses implied or intended. iNaturalist 

describes its vision as following: “Get connected with a community of over 750,000 scientists and 

naturalists who can help you learn more about nature! What’s more, by recording and sharing your 

observations, you’ll create research quality data for scientists working to better understand and protect 

nature.”27 The statement reflects the more specific nature of the data collected here when compared to 

OSM, but still opens a very broad field of goals and possible uses which the project’s data can be put 

to. These statements show that both projects share a common approach in collecting data from the 

public and providing them back to the public, leaving the choices of what to do with these data entire-

ly to the users. They stress that the data are free to use, not only in the sense of free of charge, but free 

to anyone interested in using the data, and free to any intended use, within the boundaries of the li-

censes that apply. ArtenFinder, in the same spirit, calls to the general public “to report observations of 

animals and plants, thereby creating a valuable contribution to research on nature and to nature con-

                                                      
26 https://wiki.openstreetmap.org/wiki/Main_Pagem, last accessed on 2018-09-20 
27 http://www.inaturalist.org/pages/about, last accessed on 2018-09-20 
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servation”28. An important reason for founding this project was tapping the potential of crowdsourcing 

for generating species distribution data for administrative use by the regional government of the feder-

al state of Rheinland-Pfalz. However, the project also provides online tools to the public for analyzing 

ArtenFinder data in many different ways, as well as an API for downloading all public data, thereby 

confirming the spirit of free use of the data. 

Another feature of both OSM and iNaturalist (but not ArtenFinder) is that the data produced are open 

to be worked on by the community and therefore, in many cases, are actually worked on by the com-

munity, not only by a single user. There is a slight difference between OSM and iNaturalist in the ac-

tual way this can be done, as, in OSM, users can directly edit all aspects of an object created by anoth-

er user, whereas in iNaturalist, users can only comment on a contribution, confirm or disagree about a 

species identification (or identify a species in the first place, if the contributor didn’t do so), but cannot 

edit contributions directly which are not their own. However, the principle and the consequences are 

the same: most of the data go back to the efforts of not only one but several users, and this constitutes, 

for both datasets, an important factor for quality assurance, based on the often-cited principle of Linus’ 

law, stating that “given enough eyes, all bugs are shallow” (Goodchild & Li 2012). Also, the possibil-

ity for contributors to use the platforms to communicate with each other over a common subject gives 

projects such as OSM and iNaturalist a social network dimension (Mooney & Corcoran 2012b). This 

is augmented by an open approach to data contribution (Neis & Zielstra 2014) shared by both projects, 

requiring from the contributor nothing more than creating a user account, with the immediate possibil-

ity to start contributing and becoming a part of the community. While the latter property is also present 

in ArtenFinder, this project does not provide the possibility for users to interact on concrete observa-

tions, or to interact socially on the online platform itself. Contacts and interaction do take place to a 

limited extent between observers and experts charged with checking observations, mainly in the form 

of feedback from experts to observers on certain observations. 

OSM as well as biodiversity citizen science projects have developed ways to take the social network 

aspect from the virtual level to the “real world”. For OSM, this comes in the form of so-called map-

ping parties or mapathons, which bring mappers together at a certain location, often to work on a 

common task, for instance, mapping a certain region or area to increase data availability and fill up 

gaps in the map. This can include outdoor activity, but, especially when based on mapping from aerial 

or satellite images, can also be an event held exclusively indoors (then also called “armchair map-

ping”29). A good example for events belonging to the latter category are the crisis mapping events 

which were held at the Geography Department of Heidelberg University and in many other places 

around the world after 2013 Typhoon Hayan over the Philippines and the 2015 Nepal earthquake. 

Organized in collaboration with the Humanitarian OpenStreetMap Team (HOT), both mapping events 

significantly contributed to augment the content of OSM for regions affected by natural disasters. 

They supported rescue efforts of relief organizations by providing up-to-date and complete road net-

works as well as crisis-related information such as damage on buildings or locations of provisionary 

accommodation such as tents. All of this information was mapped onscreen from up-to-date satellite 

or aerial imagery. On both occasions, large groups of volunteers met at Heidelberg University’s Insti-

tute of Geography. The events were organized by volunteers who also gave some instructions and 

auxiliary information on the tasks to be performed, pointing mapping efforts at tasks and areas most in 

need. They also provided information on specific cultural, economic and infrastructural characteristics 

of the affected countries, because most participants didn’t have prior knowledge or personal experi-

ence concerning these countries. Help was also given concerning the mapping process, including spe-

                                                      
28 translated from https://artenfinder.rlp.de, last accessed on 2018-09-20 
29 https://wiki.openstreetmap.org/wiki/Mapathon, last accessed on 2018-11-18 
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cific information about the technique of mapping from aerial or satellite images, as well as on the use 

of OSM editor software (on both occasions, a number of participants were new to the OSM project).  

In biodiversity citizen science, something similar to OSM mapping events (albeit with a less serious 

background than the examples given above) exists in the so-called bioblitzes. These are events where a 

number of volunteers meet to map the fauna and flora in an area. The motivation of such events, simi-

lar to OSM mapping events, is mostly to fill gaps in the data of a project, but also educational purpos-

es (e.g., as part of school biology education), or to raise public awareness and engage people (Novacek 

2008). Unlike OSM mapping events, bioblitzes are always outdoor events (at least to a large degree), 

as mapping from aerial or satellite images is not possible in this domain (as will be discussed in more 

detail below). For instance, iNaturalist staged a bioblitz in downtown San Jose CA during the Citizen 

Science Association’s Citizen Science 2015 conference, resulting in over 800 observations from parks 

and other areas30. In a more virtual form, many biodiversity citizen science projects also steer contri-

butions towards a certain goal (again, mostly for filling spatial or taxonomic gaps in the data) by 

launching campaigns, specifically calling for contributions from certain regions or of certain species. 

Campaigns are mostly launched by newsletters to participants and by appropriate calls on a project’s 

web portal. For instance, ArtenFinder regularly launches campaigns of this kind (see also section 

2.1.1). All of these approaches can have a considerable influence on the properties of the data, as 

mapping events as well as campaigns can produce spatial and temporal clusters of data which cannot 

be explained without taking into account the events which produced them.  

Concerning the social network aspect as such and its role in overall project motivation and goals, 

many citizen science projects even put the social network dimension in first place. iNaturalist is such a 

case, declaring that “iNaturalist is an online social network of people sharing biodiversity information 

to help each other learn about nature”, and their “primary goal in operating iNaturalist is to connect 

people to nature”31. Generation of data is defined as a secondary goal (same source). In this, we find a 

characteristic distinguishing iNaturalist from the OSM project, which declares that “OpenStreetMap is 

a free, editable map of the whole world that is being built by volunteers largely from scratch and re-

leased with an open-content license”32, thereby putting the outcome, which is the map and the data it is 

built from, in first place. ArtenFinder is rather similar to the OSM project in this respect: producing 

useful observation data is the primary goal. However, a social network component is largely missing 

in this project.  

Thus, after discussing mostly common ground of OSM and casual biodiversity citizen science projects 

and data, which is found predominantly in the open and unrestricted way in which data collection is 

organized and in which these data are made available, it is important to look at fundamental differ-

ences between them. Most important among these is the difference in nature of the information which 

is gathered by OSM on the one hand, and by casual citizen science projects in the biodiversity domain 

on the other hand. This aspect was discussed very briefly in Jacobs & Zipf (2017), where it forms the 

backdrop of different conceptualizations of completeness in the two data domains. Here, this aspect is 

shown to be important from the perspective of data quality assessment. OSM deals with “physical 

features on the ground”33, which includes topographic features such as rivers or highways, but also 

less objective features, for example, shops, crafts, or emergency assembly points. Such features are not 

(or not explicitly) present in classic cartographic products such as topographic maps or road maps. 

This may be due the fact that they are less permanent in nature and therefore not suitable for maps 

                                                      
30 https://www.inaturalist.org/projects/citizen-science-association-2015-san-jose-bioblitz, last accessed on 2018-
11-18 
31 http://www.inaturalist.org/pages/what+is+it, last accessed on 2018-09-28 
32 https://wiki.openstreetmap.org/wiki/About_OpenStreetMap, last accessed on 2018-11-18 
33 http://wiki.openstreetmap.org/wiki/Map_Features, last accessed on 2018-11-18 
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which typically have update cycles of several years, as opposed to OSM, which could, theoretically, 

be almost up-to-date at all times, given a sufficiently active contributor community. Still, all of these 

features are physical features, representing real-world objects (buildings, signs, etc.). This means that 

another volunteer can observe and report these features in exactly the same way, at least within a cer-

tain period of time. This is the fact which allows the “crowdsourcing approach” (Goodchild & Li 

2012) quality assurance regime to work in OSM. Another volunteer can find (and thereby verify the 

correctness of) a mapped object, or may prove a feature in the map to be erroneous or obsolete by not 

finding the object in question at the place indicated. 

An observation of an organism, especially if it is of a mobile animal species, is of very different na-

ture. In most cases, there is no physical, spatially or temporally permanent object in the field which 

can be observed in exactly the same way by another volunteer. The report of an observation usually 

has rather the character of a witness report (Munzinger et al. 2017). It is the report of an event, a vol-

unteer accidentally observing the presence of an organism, which cannot be repeated in exactly the 

same way by another volunteer. There are, of course, exceptions, such as sessile and perennial organ-

isms (Jacobs & Zipf 2017). Also many mobile species are bound to certain habitats or territories which 

they do not leave (at least temporarily), so that several volunteers may observe even the same individ-

ual at different points in time at approximately the same location. Going back to OSM, the same is 

possible for typical OSM objects: e.g., a highway may be repeatedly observed by many OSM volun-

teers. However, while this repeated observation usually does not lead to repeated reports (in this case, 

repeated mapping) of the object, which would be considered an error, casual citizen science projects 

do not refuse repeated reports of the same species from the same place at different points in time or 

from different observers. Each individual observation is considered an original piece of information. 

This underlines the event character of a casual citizen science observation. One of the most important 

consequences for this work is that the truth of a casual citizen science observation of an organism can-

not, in most cases, be proved or disproved (Munzinger et al. 2017). Implications of this fact for this 

work will be discussed in section 2.3. 

Another difference between casual citizen science in the biodiversity domain and OSM lies in the fact 

that most features represented in OSM do not require special knowledge or expertise to be correctly 

classified by the contributors, as they belong to their every-day environments and are part of the set of 

experiences most people share (at least, within the same cultural context). Not so most objects in bio-

diversity citizen science: most ordinary people do not habitually observe organisms and identify spe-

cies. This requires a special interest and a certain amount of effort beyond every-day activities and 

experience. As a consequence, the threshold to be overcome for taking part in a biodiversity citizen 

science project may be higher than that for taking part in the OSM project. An ordinary person might 

have more confidence in his or her ability to map a highway, than in getting a bird species right. How-

ever, where the OSM project may be less “discouraging” concerning the objects that it deals with, it 

may be more so when it comes to the technical tools that a contributor has to deal with. Contributing 

to OSM requires the use of special editor software, which, although designed for use by non-experts in 

GIS, is still somewhat complex to various degrees, depending on the editor software. This is also due 

to the complex nature of the process of creating digital geometric representations of geographical ob-

jects in the form of lines, polygons, and points. In contrast to this, interfaces of casual biodiversity 

citizen science projects, which come mostly as smart phone apps or internet portals used with ordinary 

web browsers, are generally very easy to use and functionally much closer to other web applications 

which the ordinary internet user knows from every-day experience. But then, the task to be performed 

is not complex (technically), consisting basically of entering text into form fields, selecting items from 

drop down lists, uploading an image file, and finding and placing a point location on a map similar to 

well-known web maps such as google map. Both projects whose data were used in this work fall into 
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this category of easy-to-use applications. However, the mapping element has been shown to be still 

somewhat outside the usual experience of most potential users, and to pose particular difficulties 

(Newman et al. 2010). 

The OSM project practices a way of producing contributions that is totally alien to citizen science 

projects in the biodiversity domain: contributors to OSM can use satellite and aerial imagery to extract 

features by tracing them onscreen with drawing tools provided by the editing software already men-

tioned. In this way, people can contribute real-world features without actually having been on-site. 

This practice is called remote mapping and has become a very important source of contribution ever 

since the first sets of suitable imagery were made available. Yahoo! imagery was available between 

2007 and 2011, and Bing Aerial images can be used to extract geographic features for OSM since 

2010 (Neis & Zielstra 2014) for that very purpose. It is out of scope of this work to discuss the many 

consequences for data properties and quality that this practice brings along (see, for instance, Eckle & 

Porto de Albuquerque 2015). However, the reasons why it is possible for OSM reside, again, in the 

nature of the features which are the object of the OSM project. The very same reasons prevent this 

practice from being applicable in biodiversity citizen science projects. While certain features, such as 

buildings, roads, units of land use, and so forth, can be extracted from satellite or aerial imagery (given 

a sufficient quality of the images), this is impossible for almost all occurrences of organisms, for the 

good reason that the aforementioned features can in many cases be identified from satellite or aerial 

imagery, while the latter are mostly not even visible or discernable. In biodiversity citizen science 

projects, satellite or aerial imagery is often used for orientation purposes in map viewers imbedded in 

reporting tools (such as apps or web portals), but serves here only as information which supports the 

localization of an observation.  

Another source of data in OSM, much debated in the community, are bulk imports of data from exter-

nal datasets, often data previously published as open data. Such data often provide a basic stock of 

features (e.g., a baseline road network), which the contributors can build on by adding features con-

ventionally or by remote mapping. Again, it is out of the scope of this work to discuss the many as-

pects and effects this has on the project itself, on the contributing process and on its data, or to elabo-

rate on the debate which it sparked within the OSM community (Zielstra et al. 2013). The reason why 

it is mentioned here is that such practices are rather uncommon in citizen science projects of the biodi-

versity domain, constituting another notable difference between the OSM project and most citizen 

science initiatives in the biodiversity domain. Such projects usually do not import observation data 

from other sources, be it data produced by professional scientists, or data from other citizen science 

initiatives. One of the exceptions doing so is ArtenFinder Rheinland-Pfalz, where observations from 

naturgucker.de, another German casual biodiversity citizen science project (see also above), are regu-

larly imported to complement ArtenFinder’s dataset. There are also efforts to pool species occurrence 

data from diverse sources. One of the most prominent of these is the Global Biodiversity Information 

Facility (GBIF). This may also serve as a good example to illustrate difficulties which are connected 

to this endeavor. The most important for this work is the high variability of data quality and properties 

(especially, spatial accuracy and precision of observation coordinates) in data from different providers 

(Samy et al. 2013), making it difficult or impossible to use data which were aggregated from several 

sources. In the case of naturgucker imports to ArtenFinder, a practical difficulty is that many natur-

gucker observations’ positions refer to center points of observation areas arbitrarily defined by users, 

or to map quadrat center points. Thus, they often do not represent actual observation locations. They 

are therefore different in this respect from original ArtenFinder data, and were not used in this work 

(see also section 3.3.3). Problems of this kind are also an important property of data pools such as 

GBIF’s. To be very clear, GBIF’s goal is not to transfer data from one project’s dataset to another one 

(e.g., from a digitized museum collection to a citizen science project collecting observations of plants 
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and animals), but to make data from very different sources available (downloadable) in one single 

format. For instance, a user can download a single list of observations from a certain region which 

consists of observation data from sources as different as a digitized collection of specimens from a 

natural history museum or a bioblitz which was staged to give a group of high school students a better 

understanding of ecology. GBIF leaves the responsibility for data quality issues concerning a certain 

dataset firmly with the data providers, making it a responsibility of the data user to take the highly 

heterogeneous nature of the data into account, and enables the user to do so by keeping data prove-

nance transparent at all times.  

A distinction between OSM and casual biodiversity citizen science data can also be found in the way 

the history of the information contained in the dataset is managed. The OSM project strives to keep its 

product, the map, up-to-date. If information becomes completely or partly obsolete because its real-

world state changed (e.g., a building is torn down, or a land use changed), this change will (ideally) be 

implemented also in the OSM data representing the object in question. OSM preserves the full history 

of every object it contains, so that all changes can be retraced. However, the map itself will always 

represent as closely as possible the current state of reality. Again, the different nature of casual citizen 

science observations of organisms, representing events instead of permanent objects, leads to a differ-

ence in the resulting data in this respect. All observations remain part of the dataset at all times, no 

matter how far in the past the underlying observation event took place. In a quality assurance regime 

such as ArtenFinder’s, where experts check observations, rejected observations are often removed 

from the dataset and are completely lost. In iNaturalist, where other volunteers can comment on ob-

servations, add species identification etc., an observation can acquire a history somewhat similar to an 

OSM feature, but still cannot become obsolete in the same sense as an OSM feature, because, as a 

report of an event, it cannot be disproved (see above). It can, however, be deleted from the dataset by 

the observer and then disappears without leaving a trace. 

Finally, there are also notable differences between projects in casual biodiversity citizen science and 

OSM, in areas related to the way information is organized. One of the most prominent characteristics 

of the OSM project is the possibility, for every contributor, to add new tags to the project, thereby 

expanding its scope concerning the types of objects which are represented in OSM, as well as the 

properties which can be assigned to these objects. Consequently, the list of object types that the project 

deals with and also the list of properties which the representations of these objects can have in OSM 

are not fixed. To prevent the project from developing an uncontrolled growth of the number of tags, 

“The community agrees on certain key and value combinations for the most commonly used tags, 

which act as informal standards”34. In most citizen science projects in the biodiversity domain, users 

can generally contribute observations out of a fixed list of species, with various scopes. Some projects 

restrict reporting to certain species groups (e.g., birds, see the eBird project or ornitho.de), while oth-

ers strive to provide a species list which is as comprehensive as possible. Also, most projects provide a 

fixed set of fields to enter certain aspects about an observation, centered on the basic aspects of loca-

tion, date, species, and observer. There are exceptions: the iNaturalist project allows its users to create 

their own fields for entering additional information beyond the core set of aspects which make up the 

report of an observation. However, iNaturalist is also a good example to illustrate the dangers inherent 

in such functionality: at the time of writing (researched 29.09.2018), there were 30 user-generated 

fields for information related to “Behavior/behavior” alone, some created to receive very specific be-

havioral information, e.g., to be used for a single species, but many simply duplicates with similar 

names and/or similar descriptions concerning their purpose. Although these fields contain potentially 

valuable additional information for many observations, to actually use them is difficult under these 

circumstances. As the more or less consistent set of tags in OSM proves, the community consensus 

                                                      
34 https://wiki.openstreetmap.org/wiki/Map_Features, last accessed on 2018-11-18 



2.2 Comparative Discussion of Projects and Data Use Cases 47 

approach practiced by the OSM project is a not always perfect, but overall effective way to prevent 

such aberration. ArtenFinder does not provide the possibility to add user-defined input fields. 

In summary, this section used a comparative discussion to show important properties of casual biodi-

versity citizen science as a special kind of VGI, using the project and data use cases of ArtenFinder 

Rheinland-Pfalz and iNaturalist. Comparison among one another and to OSM allowed for highlighting 

important characteristics of these projects and their data. Among the most important for this work are 

the opportunistic character of the data collection process and its effect on the data produced, in the 

form of various biases, and the nature of information collected by geographic citizen science projects 

in the biodiversity domain, with their reports of observation having the character of non-permanent 

events. Besides these main findings, more common ground and differences came to light which sup-

port our understanding of the projects and data on which this work is based. They are conflated in 

Table 2.2.1.  

Table 2.2.1: Summary of comparison of project and data properties. 
Aspect ArtenFinder iNaturalist OSM 

Character of data  
collection 

casual/opportunistic 

Data use free and open, no specific intended use 

Social activities bioblitzes, campaigns mapathons 

Principle nature of 
information 

non-permanent events permanent objects 

Knowledge involved specific scientific knowledge common knowledge 

Technical tools 
online portals or apps with relatively common 

functionality 
specific editor software 

Data provenance contributions of field observations by volunteers 
field and remote map-
ping, bulk data imports 

Essential data output all observations equally important, including past 
current map as main 

product  
(history available) 

Collaboration, social 
interaction among 
volunteers 

not on the project plat-
form 

collaboration and various ways of social interac-
tion on the project platform 

Thematic scope static volunteers may add more parameters/attributes 
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2.3 Consequences for Quality Assessment of Casual Citizen Science 
Observation Data 

The properties of casual citizen science biodiversity observation data laid out in sections 2.1 and 2.2 

imply consequences for, and entail restrictions on, quality assessment of such observations. This is 

also true for the approaches developed, evaluated and discussed in this work. A fundamental conse-

quence resulting from the event nature of casual observations of organisms is that most of these obser-

vations cannot be proven to be correct, or proven to be incorrect. In a detailed discussion of this prob-

lem, Munzinger et al. (2017) draw parallels to Popper’s theories on the nature of certain types of sci-

entific findings and also to the nature of witness reports. They conclude that “it is only possible to 

subjectively assess the degree of their credibility” (translated from Munzinger et al. 2017, p. 230). 

‘Credibility’ is a term often used in connection to VGI data quality (e.g., Gouveia et al. 2004, Flanagin 

& Metzger 2008, Ostermann & Spinsanti 2011, Freitag et al. 2016). Other terms often appearing in 

this context are ‘plausibility’ (e.g., Mülligann et al. 2011, Ali et al. 2014) and ‘trust’ or sometimes also 

‘trustworthiness’ (e.g., Bishr & Kuhn 2007 and 2013, Bishr & Mantelas 2008, Keßler & de Groot 

2013, D’Antonio et al. 2014, Vahidi et al. 2018). So far, these terms are not used in a consistent way. 

The term ‘trust’ seems to be used mostly in connection to social aspects and to aspects connected to 

the volunteers and their properties and relations, especially volunteers’ specific experience, knowledge 

and abilities, as well as social interaction between them. E.g., Bishr & Kuhn (2007) found their work 

on finding quality measures for VGI on the notion of trust between users within social networks. The 

term ‘plausibility’ seems to be used predominantly in connection to more technical aspects, e.g., with 

plausibility tests of data which are based on factual knowledge and data properties as their grounding 

(Mocnik et al. 2018). For instance, Ali et al. (2014), who employ geometric properties, topological 

relations and statistical properties of context in an effort to disambiguate OSM objects, use the term 

‘plausibility’. The work presented in this thesis falls into this category, and that is why the term ‘plau-

sibility’ is used throughout. However, there are also examples of contradicting use. For instance, Va-

hidi et al. (2018) use consistency with habitat and consistency with surroundings (along with reputa-

tion of contributor) in a fuzzy trust model and call these indicators ‘trust indicators’, not ‘plausibility 

indicators’. The ArtenFinder project conducts plausibility checks on its observation data and uses the 

term ‘plausibility’ (German “Plausibilität”35) although the observer’s experience and reputation is 

often an important factor in validation decisions (see section 2.1.1). There is certainly a need for more 

work on the clarification of relations between terms such as ‘credibility’, ‘trust’, and ‘plausibility’ (and 

maybe more terms, such as ‘reputation’ and ‘reliability’ also used in literature, e.g., Bishr & Mantelas 

2008, Rossiter et al. 2015), which would allow for a more confident use. All of these concepts have 

been shown to be useful for assessing VGI data quality, but they necessarily remain indirect, so-called 

proxy approaches (Bishr & Kuhn 2007, Keßler & de Groot 2013, Vahidi et al. 2018), which is also the 

case for the approaches developed and explored in this work. 

Biases inherent in the observation datasets limit their usefulness as a source of geographic context. 

Several relevant types of bias where described in section 2.2. Geographic and observation bias, lead-

ing to inhomogeneous distribution of context information in space, implies that geographic context 

will not be adequate for plausibility estimation in all locations. Also, spatial inhomogeneity of geo-

graphic context may have an influence on plausibility estimation results in locations where this estima-

tion is basically possible. Reporting bias and detection bias have the effect of completely excluding 

certain species or even whole species groups from the observation dataset, or at least of reducing ob-

servation numbers of certain species or species groups. Casual citizen science observation data of or-

ganisms, such as the data used in this work, indicate the presence of a species at a place and time, but 

                                                      
35 https://artenfinder.rlp.de/node/1, last accessed on 2018-10-03 
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do not allow for inferring that other species which were not reported were absent. This must necessari-

ly affect the thematic properties of the geographic context used for plausibility estimation, which will 

be biased towards species and species groups which are more popular, or more easily detected, than 

others. Also, some species might not have enough observations to provide an adequate information 

basis for plausibility estimation. All of these issues will be duly considered and their effects discussed 

in detail in following chapters, which explore plausibility indicators for casual citizen science observa-

tions of organisms. 

 

 

 





 

3 Methods 

3.1 Intrinsic Approach: Observed Communities 

The focus of this work lies on the development and evaluation of plausibility indicators for new obser-

vations which are added to the data in a biodiversity citizen science portal collecting casual observa-

tions. The methodology described in this section is aimed at estimating the plausibility of a new ob-

servation in light of existing approved observations and is therefore an intrinsic approach. To achieve 

this, the set of species observed around the candidate observation, that is, a new observation which is 

to be tested for plausibility, is compared to the set of species usually observed close to observations of 

the same species. It is well known that species form communities (biocenoses) whose composition is 

determined by species distribution, which is in turn governed by environmental conditions (e.g., cli-

mate, elevation, soil properties, habitat structures of all kinds, and so on) or by the relationships be-

tween species (Wittig & Niekisch 2014). Section 2.2 explained that the spatial distribution of casual 

citizen science observations of species deviates from the natural distribution in many ways due to a 

number of biases introduced by the VGI data acquisition process. The set of species that are usually 

observed close to a certain target species is therefore determined by the biocenosis (or several bioce-

noses) the species belongs to, as well as by factors arising from the observation process.  

I call the set of species frequently observed in proximity to observations of a certain target species the 

observed community of that target species. Observed communities do not represent the target species’ 

biocenoses, but rather the target species’ typical context of observation within the observation dataset. 

In my approach to plausibility estimation, this is used as a basis for comparison with the set of species 

observed in proximity to a candidate observation of the same species. This comparison appraises how 

well the context of the candidate observation fits the usual context of the target species within the 

same dataset of observations. I use similarity measures, which were developed for the comparison of 

biocenoses, to compare the candidate observation’s context with the target species’ observed commu-

nity. I argue that a high level of similarity between the proper observed community and a candidate’s 

observed context indicates a high plausibility of the candidate observation. A low level of similarity 

between candidate context and observed community, however, makes either the observation’s location 

or the species identification given by the observer appear implausible.  

The principle elements of this method are the following (see Figure 3.1.1): 

 Extraction of species-specific lists of other species frequently observed around them from ex-

isting observation data (observed communities), 

 extraction of the species observed around the candidate observation which is tested for plausi-

bility (candidate context), 

 comparison of the candidate context to the proper observed community by means of a simi-

larity measure, and 

 interpretation of the resulting similarity value as an indicator of plausibility of the candidate 

observation. 
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Figure 3.1.1: Observed communities approach, schematic overview of principle elements. A new can-
didate observation’s context of species observed around it (the candidate context) is compared to the 
typical context of the observed species (the observed community).  

In the following, this section describes the basic principles and steps of analysis employed in the ob-

served communities approach to plausibility estimation of casual citizen science observations of or-

ganisms. In its basic form, the approach is entirely intrinsic, because candidate observations are tested 

for plausibility based on earlier, approved observations from the same dataset, and no external data 

whatsoever are used.  

Step 1: Extraction and preprocessing of observed communities 

Extraction of the observed community for a certain target species is based on existing, approved ob-

servations of this target species and on approved observations of all other species in the same observa-

tion dataset. In an iterative process, species observed in a defined neighborhood around each target 

species’ observation are extracted (see Figure 3.1.2). The relevant neighborhood is defined by a search 

radius and is therefore a circular area around the target species observation. For the purposes of evalu-

ation, the size of this radius was set to 1,000 m as a compromise value between smaller radii which 

render a more precise view on the geographic context, but which are strongly limiting of context ob-

servations numbers, and larger radii which may lead to unspecific contexts. In sensitivity analysis, 

experiments were also conducted which use land cover and other information to focus neighborhoods 

in a meaningful way (see section 3.4.4). 

Neighborhoods of target species observation cases frequently overlap, especially in regions with high 

observation density of the target species. A single observation of a context species may therefore pro-

duce co-observation cases with several observations of the target species. These cases are considered 

valid co-observation cases and are counted accordingly. Each coincidence of the target species and a 

context species within the search radius around a target species observations results in a co-

observation of the target species with the context species. A context species becomes part of the list of 

species associated with the target species if just one such co-observation occurs. The frequency of co-

observation is also recorded for each context species, that is, the portion of target species observations 

having at least one observation of the context species in its neighborhood. This allows for finding con-

text species which are frequently found close to a target species (see below). The example target spe-
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cies in Figure 3.1.2, with six target species observations, has three co-observations with context spe-

cies A, and six co-observations with context species B, resulting in a co-observation frequency of 0.5 

for species A, and of 1.0 for species B. 

 
Figure 3.1.2: Schematic view of the basic principles of extraction of observed communities. (Source of 
observations: ArtenFinder Rheinland-Pfalz. Red points: target species observations; red circles: rele-
vant neighborhood of target species observations; orange points: observations of context species A; 
green points: observations context species B; blue points: observations of more potential context spe-
cies not highlighted in this example.) 

For each target species, this procedure results in a list of context species which were observed within a 

certain spatial proximity of the observations of the target species. Principally, all species in a dataset 

can be used as target species one after the other, while all other species serve as their context species, 

and roles are reversed when moving to the next target species. However, for evaluation only species 

with at least 100 approved observations were used as target species for observed communities extrac-

tion. The reason for this is that, in cases with very few available approved observations of a target 

species, these represent only a few situations of that target species in which it was actually observed, 

which may lead to an observed community which is biased towards these few observation situations.  

The resulting list of species co-observed with the target species is further processed in two ways (see 

Figure 3.1.3). First, the lists are restricted to context species with a frequency value of co-observation 

above a certain threshold value. In this way the lists are reduced to context species which are frequent-

ly observed in association with the target species, while disregarding species which are only occasion-

ally observed in proximity to a target species observation. This step is based on the assumption that 

frequent co-observations are more meaningful in describing a species’ observation environment than 
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infrequent ones. It is important to stress that this procedure will retain only associations which are 

frequently observed, and not necessarily associations which frequently occur in the natural environ-

ment. Ecologically important associations, such as a butterfly species and its food plant, or a predator 

and its preferred prey, may be lost if one of the species involved is not frequently observed in conjunc-

tion with the other. This is one of the important factors which make observed communities distinct 

from true natural species communities. This step also serves to reduce chance co-observations of spe-

cies which are probably not important for describing a target species’ observed environment, e.g. 

chance flyovers of birds. There is no obvious way to determine the frequency threshold for this step. It 

was set to a medium value of 0.5 for evaluation, but effects of higher or lower values were also tested 

(see section 3.4.3). 

Up to this point, this procedure is in fact a spatial association analysis with spatial transactions defined 

by reference features as proposed by Koperski & Han (1995). This results in lists of spatial association 

rules of the form “target species x → context species y”. Selecting only target species with a minimum 

number of approved observations means that only species with a minimum support are used. The rate 

of co-observation of a species with the target species in all considered observations of the target spe-

cies is equal in these terms to the confidence of the association rule “target species x → species y”. 

Filtering for species with a high rate of co-observation reduces the rules to those with a high confi-

dence. In this way, strong association rules are identified (Koperski & Han 1995). 

The resulting species lists are further processed by eliminating context species which occur in many 

lists at the same time. To this end, each context species is checked for the portion of lists it is part of, 

and context species with a rate above a certain threshold value are eliminated from the lists. This step 

is based on the concept of so-called companion species, which is used in plant sociology to describe 

species that are part of many different species communities and that therefore do not add to the dissim-

ilarity of these communities (Wilmanns 1998). The concept is applied to observed communities for the 

same reason: to eliminate species which do not add to the dissimilarity of observed communities. Such 

species are called nonspecific species in this work, because the use of the concept does not correspond 

to the proper meaning of the term ‘companion species’, which is only used in plant sociology. A fre-

quency threshold value of 0.5 was employed in evaluation, but higher or lower values were also tested 

for effects on results (see section 3.4.3). 

The product of this procedure is what I call the observed community of a target species. It lists all 

context species frequently observed in spatial proximity to the target species, excluding context spe-

cies which are frequently associated with many target species at the same time. The observed commu-

nity describes the geographic context of a species within the observation dataset. For further analysis, 

only observed communities listing 10 or more context species were used in order to avoid erratic re-

sults in similarity calculation. Observed communities meeting this requirement are subsequently called 

valid observed communities. It is important to note that this condition, as well as the other parameters 

and thresholds employed in creating observed communities (see above), restrict the number of species 

for which a valid observed community can be extracted. For example, a target species with 120 ap-

proved observations may produce an initial list of 20 associated species. Let us say that only 11 of 

these are associated with 50% or more of the target species observations, and identification and re-

moval of nonspecific species removes two more species from the list of associated species. The result-

ing observed community of this example target species has now nine species left and is therefore not 

used in subsequent analysis. 
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Figure 3.1.3: Processing of observed communities. 

Step 2: Extraction of species observed close to the candidate observation 

The procedure for extracting the context species observed around the candidate observation is neces-

sarily very similar to the extraction process of observed communities. The same radius is used to de-

fine the neighborhood, and the context species are extracted from the approved observations found 

there. As we deal with just one observation in each candidate case, a rate of co-occurrence of context 

species can of course not be calculated in the same way, and all context species with at least one ob-

servation in the candidate’s context become part of the list of context species. Nonspecific species 

known from the observed community extraction step (see above) are removed from the resulting spe-

cies list. Similar to observed communities, context species lists with less than 10 species are discarded, 

so that the subsequent comparison by means of similarity coefficients (see below) is only conducted 

on two species lists with at least 10 species each. Candidate observations meeting this requirement are 

subsequently called valid candidate observations. 
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-----------------------------------------------------------------------------

Identify and remove nonspecific species

-------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------
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----------------------------------------------------------------------

Valid observed communities (≥ 10 species)
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Step 3: Comparison by means of similarity indices 

Similarity indices or coefficients present a widespread method used to measure the similarity between 

species assemblages in different sites, at different scales, or between different points in time (so-called 

beta diversity, Wittig & Niekisch 2014, Whittaker 1960), but also for measuring similarity between 

objects in other domains (Zuur et al. 2007, Legendre & Legendre 1998, Lennon et al. 2001, Koleff et 

al. 2003). Here, similarity coefficients are used to compare the observed community of the target spe-

cies to a candidate observation’s observed species context. In other words, the comparison is drawn 

between a synthetic typical observation site of the target species and a single real observation site that 

was not part of the creation process of the synthetic site. Good overviews and useful discussions of 

similarity coefficients and their properties can be found, for instance, in Legendre & Legendre 1998, 

Koleff et al. 2003, Magurran 2004, and Zuur et al. 2007.  

When selecting a suitable similarity coefficient, a first and very important decision has to be made 

concerning the treatment of so-called double zeros, that is, species missing at both sites (in both lists) 

(Zuur et al. 2007). Some similarity coefficients, called symmetric, include double zeros as a factor 

which raises similarity, while other coefficients, called asymmetric disregard double zeros. The im-

portant question here is to ask which approach makes sense in the actual case. In the present case, 

including double zeros would mean counting the absence of all species which were observed in the 

area of interest of the data use case, but which are absent from the observed community as well as 

from the candidate context, as double zeros contributing to the similarity of the two. This obviously 

does not make sense. It would lead to very high similarity values, because the observed community 

and the candidate’s species context are both much smaller than the entirety of species observed in the 

area of interest. In a VGI environment of casual observations, the absence of a species at a site may be 

due to the species not occurring at the site, or due to not having been detected or reported by the ob-

servers, representing detection or reporting bias in the data (see section 2.2). Species missing both 

from an observed community and from the candidate context compared to it are therefore irrelevant 

for that comparison and should not contribute to similarity. Legendre & Legendre (1998, p. 253) also 

state that “it is thus preferable to abstain from drawing any ecological conclusion from the absence of 

a species at two sites”. To this, I would add that this is so except in cases where this explicitly makes 

sense, which is not the case here. Therefore, this work uses asymmetrical similarity coefficients.  

Another important distinction is between similarity coefficients which use only the presence-absence 

information at two sites, which are called binary coefficients, and coefficients which use quantitative 

aspects of the data, and which are called quantitative coefficients. For quantitative coefficients, abun-

dance information is usually used as the quantitative aspect, that is, the number of individuals of a 

species at a site. A common problem with opportunistic citizen science observations of species is that 

abundance information is often either missing or else quite unreliable. Mostly, this is because abun-

dance information is often not mandatory information explicitly demanded from the observer. Also, 

giving accurate numbers of individuals can be challenging in some cases, while in other cases it is less 

difficult (Kosmala et al. 2016). Observations therefore often do not contain any information about the 

numbers of individuals observed, or these numbers, if given, are a rough estimate. Both data character-

istics occur in the data use cases used here, making them typical for opportunistic citizen science data 

cases in this respect. For this reason, this information was not used for the calculation of quantitative 

coefficients, and the method was rather evaluated with binary similarity coefficients. It has to be not-

ed, as Koleff et al. (2003, p. 368) also state, that “the vast majority of explicit studies of beta diversity 

have focused on presence/absence data”. For data with missing or uncertain abundance information, 

this is a natural choice. Considering the VGI nature of the data, however, a quantitative similarity in-

dex was tested in sensitivity analysis, substituting the abundance information with observation fre-

quency or a geographic distance criterion (see section 3.4.5). The goal here was not to miss advantages 
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for plausibility estimation which might be obtained by choosing a quantified approach to similarity 

calculation. 

In order to demonstrate the concept of the observed communities plausibility indicator method pre-

sented here, a well-established asymmetrical, binary similarity coefficient was used, namely the Jac-

card index (Zuur et al. 2007). Legendre and Legendre (1998) present more similarity coefficients 

which are mostly variants of the Jaccard index, and which do not introduce significantly different ap-

proaches to similarity calculation. They were therefore not evaluated. The Jaccard index is represented 

in the following formula, where a is the number of species which both sites have in common, b the 

number of species unique to site one and c the number of species unique to site two.  

F1: Jaccard index  J =
�

�	�	�	�	�
 

The coefficient renders values between zero (no species identical at both sites) and one (perfect simi-

larity with identical species at both sites). 

A further consideration, especially for binary coefficients, is their sensitivity to large species richness 

differences between the two sites compared, that is, large differences in length between compared 

species lists. Most standard binary similarity coefficients are quite sensitive to such richness differ-

ences: if one of the lists is much longer than the other, there will always be a great number of species 

not present in one of the lists, and resulting similarity values will be generally low. This is also the 

case for the Jaccard index presented above. Lennon et al. (2001) present a similarity coefficient which 

they derived from a coefficient used by G. G. Simpson (1943), and which decreases the influence of 

richness differences between the two sites compared, because it compares the number of species 

which both sites have in common, with the smaller of the two sites. Baselga et al. (2007) call this coef-

ficient the Simpson index36. In the approach presented here, there are usually marked differences in 

numbers of species between observed communities and candidate contexts. In most cases, observed 

communities, which are reduced to frequent associations, are smaller than candidate contexts, except 

in cases where a candidate observation is situated in a region with low observation density. A coeffi-

cient which is able to reduce the influence of species richness differences is therefore potentially use-

ful here.  

Using the same notation as for Jaccard index (see F1), the Simpson index is represented below, closely 

following a notation by Lennon et al. 2001 and Koleff et al. 2003, where, as above, a is the number of 

species which both sites have in common, b is the number of species unique to site one, and c is the 

number of species unique to site two: 

F2: Simpson index   S =
�

�	�	���	(�,�)
 

Comparisons between an observed community of a target species and the species occurring around a 

candidate observation of that species are conducted only with observed communities and candidate 

contexts with 10 or more species each. This was done to avoid insufficient data basis for similarity 

calculation, which might lead to erratic results.  

  

                                                      
36 This index not to be confused with a measure of species diversity also called the Simpson index, and which 
was introduced by E. H. Simpson in 1949 (Simpson 1949, Allaby 2004) 
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Step 4: Interpretation of the similarity as an indicator of plausibility of the candidate observa-

tion 

The goal of the approach and method presented here is to use a similarity value as an indicator of the 

plausibility of a candidate observation in light of existing, approved observation data. The similarity 

value obtained by comparing a candidate observation’s species context to the proper species’ observed 

community is a measure for how well the candidate observation fits the existing, approved observa-

tions of the same species. However, for similarity to be able to perform in this way, it is necessary that 

observations which fit the existing data well have similarity values which are different from similarity 

values of observations which do not fit well, and therefore allow for distinguishing between these ob-

servations. In other words, the approach should be able to identify unusual observations with the help 

of similarity values. The natural expectation is that similarities for well-fitting observations are higher 

than for unusual observations.  

It is important to stress here that observations identified as unusual and thus implausible are not neces-

sarily erroneous: both species identification and reported location may represent a real observation 

event at the place specified and of the species given by the observer. There are several possible causes 

for an observation not fitting the existing approved data well, for instance, an observation coming 

from a place where (for whatever reason) the species in question was not observed before, or shifts in 

the range of a species (e.g., induced by climate change), just to name two reasons. The first reason is 

rooted in the VGI nature of the data collection process, while the second is related to the species’ bio-

logical and ecological properties. Unusual observations, whether identified by the indicator presented 

here, or by any other means, should therefore never be subject to automatic removal from a dataset, 

but rather be marked as unusual, and further scrutinized.  

The stock of observation data available for extracting observed communities or candidate contexts 

usually grows over time, as more observations are reported and validated. Therefore, observed com-

munities and candidate contexts change if extracted at a later point in time. Plausibility estimations for 

the same candidate observation may therefore change also if repeated, because their data context 

changed. However, species inventories of areas will reach, at some point, a level at which adding more 

observations will not add many more species so far unobserved in the area (Colwell et al. 2004, Jacobs 

& Zipf 2017). At this point, observed communities and candidate contexts will also almost cease to 

change. Spatial heterogeneity of VGI data implicates that this stage is reached in different areas at 

different points in time. Another factor for changes in the species composition of contexts is the fact 

that some species change their range, e.g., due to climate change (Munzinger et al. 2017). An observa-

tion of a species which is spreading into new territory will appear unusual at first, considering its con-

text, but may well become plausible at a later point in time, when more observations transform the 

target species’ observed community. It can therefore be argued that such observations should not be 

removed from the dataset at all (Munzinger et al 2017), but rather tested again later on.  
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3.2 Extrinsic Approach: OSM Environments 

Section 3.1 presents a methodology for estimating the plausibility of casual citizen science observa-

tions of organisms which uses existing, approved observations within the same data source as the 

source of geographic context. Such purely intrinsic approaches to plausibility estimation are useful and 

have several advantages, but should be complemented with approaches which introduce extrinsic con-

text information into the process of plausibility estimation. While the former rely solely on data from 

the same dataset as geographic context source and therefore can work only for candidate observations 

which have a minimum number of context observations, the latter use some kind of external geograph-

ic reference data for this purpose, potentially providing geographic context also in regions with insuf-

ficient numbers of context observations. 

In this work, the suitability of OSM data as a novel source of geographic context is examined. There 

are many commonalities between OSM data and casual citizen science observations of organisms, 

because they are both VGI data, but they also show important differences (see chapter 2 for a detailed 

discussion). For the most part, the methodology laid out in section 3.1 is retained, but adapted where 

necessary to the use of OSM data as the source of geographic context, instead of existing, approved 

observations. This method takes a step, therefore, from observed communities to OSM environments. 

The approach is not intrinsic in the sense discussed in section 1.4, because it uses an extrinsic source 

of geographic context. It retains a partially intrinsic nature in using previous target species observa-

tions to extract a typical environment of a target species in terms of OSM tags frequently mapped in 

spatial proximity to observations of that target species. 

OSM objects and their tags contain a wealth of information about the environment, in the narrower 

sense, describing elements of the physical environment, both natural and anthropogenic, and in a 

broader sense, including also information on cultural, social, economic, and other human aspects of 

the environment. For the goals of this work, OSM data on the physical environment are certainly more 

important, although careful analysis might reveal interesting connections between elements of the 

cultural, social and economic environment especially with certain properties of citizen science obser-

vations which are determined by their VGI nature. However, this work concentrates on using OSM 

data on the physical environment as a source of context for describing typical environments of species. 

To this end, the species found around an observation are replaced with the OSM tags attributing the 

geospatial objects found around observations. The rationale behind this approach exhibits a certain 

methodological proximity to niche modelling (e.g., Vahidi et al. 2018), where a number of different 

parameters characterizing the natural environment of a species and multivariate regression models are 

used to extrapolate probabilities of occurrence from the locations of existing, authoritative observa-

tions to areas where no observation data are available. However, the method presented here constructs 

the typical environment of a species in a different way, uses different information for describing this 

environment, and estimates the plausibility of candidate observations (that is, observations actually 

made), rather than extrapolating to unobserved areas.  

Thematic information is attached to OSM objects (also called features) in the form of so-called tags37, 

which consist of a key and a value, e.g., “landuse=forest”. Each object can have one or more such tags. 

The OSM environments approach exploits these tags to describe a target species’ or candidate obser-

vation’s environment. OSM tags tell us something about the presence of certain basic habitat elements, 

natural or man-made, such as a waterbody, buildings, or forests. Most of these elements can have a 

multitude of different shapes and are often not even clearly defined. Bennet discusses the latter prob-

lem for forests (Bennet 2001). OSM is therefore certainly unsuitable as a source of proper habitat in-

                                                      
37 https://wiki.openstreetmap.org/wiki/Tags, last accessed on 2018-11-18 
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formation, which is also true for land cover data sources such as CORINE Land Cover (used in a 

methodological modification to the observed communities approach, see below, section 3.4.4). In con-

trast to these data sources, however, OSM contains information and elements belonging to many dif-

ferent domains, not just land use or land cover. Information in OSM is far more detailed, both themati-

cally and geometrically, than in these land cover datasets. This is also the reason why OSM was used 

in this work as an alternative source of geographic context in a separate, extrinsic approach to plausi-

bility estimation of observations which exploits OSM’s thematic information content. A majority of 

OSM’s features relate to man-made objects, but it also includes data about natural objects as small as a 

single tree, a spring or a small pond, along with larger elements of land use or land cover, such as a 

forested area or a lake. It is, however, also very important to remember that OSM data are spatially 

heterogeneous, a result of their VGI nature. For instance, trees in streets may have been mapped in one 

part of a city and are therefore available as geographic context information when OSM is used, but 

may be missing in OSM in another part of the same city, because they were not mapped so far. 

While the processing steps already used in the observed communities approach are kept, replacing 

surrounding observations of species with surrounding OSM objects and their tags requires some modi-

fications within the processing steps. The following description of the methodology therefore follows 

closely the description in section 3.1, but introduces necessary modifications. 

Step 1: Extraction and preprocessing of OSM environments 

Extraction of the OSM environment of a target species is, again, based on existing, approved observa-

tions of the target species. Geographic context information is provided by OSM. The analysis uses all 

geometric types of objects: nodes objects as well as ways and relations (forming lines and polygons). 

To identify tags frequently associated with observations of a target species, the rate of co-observation 

of a tag with the target species in all considered observations of the target species is calculated. For 

each target species, this procedure results in a list of tags which were mapped within a certain spatial 

proximity of observations of the target species. Frequency of association of a tag with the target spe-

cies is determined by the number of target species observations having that tag within their search 

area, regardless of how often that tag occurs within the search area. A circular area around the target 

species observation is used to define the relevant neighborhood. Figure 3.2.1 illustrates the procedure. 

The description of the properties of OSM data in section 2.1.3 discussed difficulties introduced by 

geometric element segmentation, leading to an artificial multiplication of tag occurrences, e.g., be-

cause a highway may be split into many small segments all having the same tag. This problem does 

not affect the OSM environments approach because it employs a binary view on the geographic con-

text extracted from OSM: a context will contain a tag regardless of how often it actually occurs near-

by. However, a tag will be part of many OSM environments or candidate contexts when it is frequent, 

or is attached to elements which cover large areas or long distances.  

The list of tags is then restricted to those that are frequently associated with the target species, that 

means, tags which are found in many places where the target species was observed. Next, tags fre-

quently occurring around many different species are also removed. Hereafter, these tags are called 

nonspecific tags. It is obvious that this last step does not lead, in the OSM environments approach, to a 

list of nonspecific species, that is, species which are frequently associated with many other species. 

However, based on the assumption that nonspecific species identified in the observed communities 

approach are widespread and therefore have rather unspecific OSM environments, they were excluded 

from evaluation of the OSM environments approach. If it makes sense to exclude such species in the 

observed communities approach (which it does), this is also the case for the OSM environments ap-
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proach. In evaluation of the OSM environments approach, nonspecific species lists were used which 

were obtained in observed communities evaluation with similar parameters. 

 
Figure 3.2.1: Schematic view of the basic principles of extraction of OSM environments. (Source of 
base map: OpenStreetMap38; observations: ArtenFinder Rheinland-Pfalz. Original data for hillshade: 
CIAT-CSI SRTM.)  

A list of tags extracted and filtered in this way is what I call the OSM environment of a target species. 

It lists all tags frequently mapped in close spatial proximity to the target species, excluding tags which 

are frequently associated with many target species at once. The OSM environment describes the geo-

graphic context of a species as this context is mapped in OSM. For further analysis, only OSM envi-

ronments with 10 or more tags were used, to avoid erratic results in similarity calculation. 

Step 2: Extraction of OSM objects and their attributes close to the candidate observation 

The procedure for extracting OSM tags mapped around a candidate observation is similar to the pro-

cess described for extraction of context tags around target observations for OSM environments extrac-

tion (see above). A circular area is used to define the neighborhood, and the tags are extracted from the 

OSM objects found there. Tags which were identified in the preceding step to be associated with many 

different species (so-called nonspecific tags), are removed from the resulting list. Candidate context 

tag lists with less than 10 tags are discarded, so that the subsequent comparison by means of similarity 

coefficients (see below) is only conducted on two lists with at least 10 tags each. 

 

  

                                                      
38 © OpenStreetMap contributors; osm-wms.de 
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Step 3: Comparison by means of similarity coefficients 

Comparison between OSM environments and candidate context tag lists are conducted with the same 

similarity coefficients used for the observed communities approach, namely the Simpson and the Jac-

card index (see section 3.1). Again, comparison is between a synthetic typical observation site of the 

target species represented by the OSM environment and a real observation site which was not part of 

the creation process of the synthetic site, namely the candidate context. Although the geographic con-

text retrieved from OSM is of different nature than observed communities of species, careful examina-

tion of all considerations for the selection of the similarity indices as laid out in section 3.1 hold also 

for the OSM environments approach. 

 

Step 4: Interpretation of similarity as an indicator of plausibility of the candidate observation 

The overall goal of the approach and method presented here is to use a similarity value as an indicator 

of the plausibility of a candidate observation in light of the species’ OSM environment. The similarity 

value obtained by comparing the OSM tags mapped around a candidate observation to the proper spe-

cies’ OSM environment is still (as with the observed communities approach) a measure for how well 

the candidate observation fits the existing, approved observations of the same species. Again, the ex-

pectation is that similarities for well-fitting observations are higher than for unusual observations, 

which is a fundamental prerequisite for the OSM environments approach to work as a plausibility in-

dicator. As before, only approved observations (by the standards of the quality assurance strategies 

employed in the data use cases) are used in the process of extracting OSM environments, to make sure 

that they are based, as far as possible, on correct observations. 
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3.3 Evaluation Methods 

3.3.1 Principles and Workflow of Evaluation 

The observed communities approach and the OSM environments approach to plausibility estimation 

for casual citizen science observations of organisms can provide indicators of the plausibility of obser-

vations under the following condition: plausible candidate observations must show a higher similarity 

of their context to the target species’ observed community or OSM environment, than do implausible 

candidate observations. Both approaches were therefore evaluated by comparing similarity values of 

plausible and implausible observations. For this purpose, suitable sets of candidate observations were 

selected from real observations. Also, sets of synthetic plausible or implausible candidate observations 

were created. Generating these candidate sets of candidates was the first step in evaluation, and it is 

described in detail in section 3.3.2.  

Evaluation then proceeded by calculating similarity values for all candidate observations in the sets, 

using both the observed communities approach and the OSM environments approach. From these sim-

ilarity values, distributions of values were derived for sets consisting of either plausible or implausible 

candidate observations. These distributions of similarity values were visualized in the form of box-

plots. Additionally, kernel density estimations of the distributions were calculated to obtain smoothed 

renderings of the probability density of similarity values of the different sets of candidate observa-

tions. These two different ways of visualizing the evaluation results were chosen because they are able 

to convey different and complementary information on the distributions of similarity values. It is im-

portant to note here that both kernel density estimations (being normalized to area under the curve = 1) 

and boxplots obscure differences in sizes between the sets. In results (chapter 4), sizes of sets (num-

bers of candidate observations) are therefore always given in the captions. In boxplots of results used 

in the results chapter (chapter 4), boxes represent the interquartile range, dots represent means, hori-

zontal lines in the boxes represent medians, and whiskers extend to max. 1.5 times the range of the 

box. 

Finally, statistical tests were conducted to examine whether differences between the distributions of 

similarity values of plausible observations and those of implausible observations are significant. Simi-

larity values found in this work are not normally distributed. Therefore, the Mann-Whitney-U-Test 

(Mann & Whitney 1947) was used to test differences between distributions. Basically, the test allows 

for examining whether differences between distributions are statistically significant or not. However, 

strictly correct formulation of the hypotheses of this test depends on whether variances of the distribu-

tions involved are homogeneous or not. This was tested with the Fligner-Killeen test (Fligner & 

Killeen 1976), a test suitable for non-normal distributions. Mostly, variances were found not to be 

homogeneous. In this case, the null hypothesis of the Mann-Whitney-U-Test is as follows: The proba-

bility that a similarity value in the first distribution is greater than a similarity value in the second dis-

tribution is not different from the probability that a similarity in the second distribution is greater than 

a similarity value in the first distribution. The alternative hypothesis is as follows: The probability that 

a similarity value in the first distribution is greater than a similarity value in the second distribution is 

different from the probability that a similarity value in the second distribution is greater than a similar-

ity value in the first distribution. See MacFarland & Yates (2016) for details on this test procedure. In 

rare cases where variances are homogeneous, the test can be interpreted to show the significance of 

differences between the medians of the distributions involved. Note that p-values are often given as “< 

2.2*10-16“, this number representing the minimum value of the R functions used for calculation (R 

package “stats”, functions “wilcox.test” and fligner.test”). Figure 3.3.1 summarizes the principle steps 

of the evaluation methodology explained above. 
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Figure 3.3.1: Workflow used in evaluation of the observed communities and the OSM environments 
approach. 

3.3.2 Generating Sets of Candidate Observations for Evaluation 

A key factor in the evaluation methodology is the generation of suitable sets of candidate observations. 

These sets were produced in several different ways which are explained in this section. They comprise 

sets of real observations from the two citizen science projects’ data pools used in this work, as well as 

sets of synthetic observations which were specifically generated for this purpose.  

Real observations which were either approved or disapproved in their project’s validation process 

could possibly be used as plausible or implausible candidate observations. Sets of such observations 

can be considered to contain largely plausible or implausible observations, respectively, because plau-

sibility plays an important role in the validation process. However, there are several difficulties to be 

considered here. First, while approval or disapproval of observations is largely based on plausibility 

estimations on the side of the persons making that decision, it is not necessarily the geographic obser-

vation context playing a role here, but also other considerations, such as the observer’s experience, the 

observation date, or a photo proof. For the ArtenFinder use case, we have seen that decisions to reject 

an observation may even be based on reasons other than plausibility, such as a missing photo proof in 

an observation from an unexperienced observer. Such reasons cause sets of approved or disapproved 

observations to contain cases which will appear implausible although approved, or plausible although 

rejected, if only the observations’ geographic context is considered. Second, while observations which 

pass the validation mechanism become part of the dataset of the respective project and are therefore 

available for use, disapproved observations are in most cases quickly corrected, deleted, recommitted 

to the observer’s private data pool, or in some other way removed from the dataset. They are therefore, 

in most cases, not available for analysis. Despite these difficulties, sets of real approved and rejected 

(where available) observations were used in evaluation, to test the approaches’ performance on such 

data. Details on the generation of these sets are explained in section 3.3.3. Evaluation results with 

these sets tell us something about how far the approaches’ plausibility estimations for certain candi-

date cases are in accordance or discordance with actual validation decisions in these cases. 
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To overcome the shortcomings of real approved and disapproved observations for the purposes of 

evaluation, strategies and methods for synthesizing plausible and implausible candidate observations 

were developed and applied. A first method of synthesizing implausible observations was developed 

in close cooperation with domain experts from the ArtenFinder project. With real error cases in mind 

which frequently occur in the observation process, they proposed to use species closely resembling 

each other physically, but living in different habitats or regions. Such species should have a differing 

spatial distribution, which can be expected to lead to different observed communities for the two spe-

cies. Swapping species identification for the correct observations of such species was expected to pro-

duce implausible observations which are realistic in that they resemble cases often occurring in the 

real observation process: lacking expert knowledge, participants often mix up species which closely 

resemble each other, but which could be distinguished when taking their typical environments into 

account. For both data use cases, lists of species pairs were developed and potentially implausible 

observations synthesized by swapping species identifications between the accepted candidate observa-

tions of these species pairs. ArtenFinder species for this set of candidates (see appendix, section 7.1.1) 

were selected in cooperation with experts from the ArtenFinder project. Their positions were extracted 

from accepted observations of 2016. For the iNaturalist use case, a set of artificial implausible obser-

vations was extracted in the same way from research grade iNaturalist observations of 2016. The se-

lection of suitable pairs of species was grounded in two online resources: the Audubon Guide to North 

American Birds39 and the Jepson Flora Project40. These sources allow for identifying species which are 

physically similar, but live in different habitats or regions. The resulting set of candidate observations 

also has a species group composition differing from the candidate set of research grade observations.  

This method of synthesizing implausible observations has two major advantages: it is grounded in 

biological and/or ecological knowledge about the species involved and in knowledge about real errors 

occurring in the observation process. Its main disadvantage is that it is quite involved and time-

consuming. Also, it considers only a small and rather arbitrary (although well-founded) selection of 

species, so that the thematic properties of this set of observation data are potentially not well compara-

ble to those of other sets of candidate observations. Finally, there is still some probability that observa-

tions of two species, whose observation points are exchanged among one another, are observed in 

spatial proximity to one another, resulting in cases with high similarities. 

Therefore more methods to generate sets of candidates for evaluation were employed which do not 

involve biological or ecological expert knowledge, or knowledge about the observation process, and 

which are, potentially, better able to produce sets with a high content in plausible or implausible ob-

servations. To this end, the basic properties of the two approaches to plausibility estimation were re-

considered. A candidate observation should appear plausible when it is situated in any location where 

its observation or OSM context is similar to its species’ observed community or OSM environment. A 

candidate observation should appear implausible if it is situated in any location where its observation 

or OSM context is dissimilar to its species’ observed community or OSM environment. These consid-

erations can be used to create synthetic sets of candidate observations whose members should mostly 

be identified as plausible or implausible, if the approaches are working properly, and are therefore 

suitable to evaluate the approaches.  

Producing a set of synthetic implausible candidate observations for a certain target species is pretty 

straightforward: it may consist of observation points which are located away from known observations 

of the same species. This will exclude most locations with a context similar to the target species’ ob-

served community or OSM environment. A certain unknown probability remains, though, that such a 

                                                      
39 https://www.audubon.org/bird-guide 
40 Jepson Flora Project (eds.) 2018. Jepson eFlora, http://ucjeps.berkeley.edu/eflora 
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point will still be located in a matching context, in which the target species was so far not observed. 

This technique was used to generate two sets of implausible candidate observations. The first was 

designed to make sure that the spatial properties of the synthetic implausible observations match the 

spatial properties of the real observation data. This is relevant because, as we will see, similarity val-

ues correlate positively with the observation or tag density around the candidate under certain circum-

stances. A synthetic set of implausible candidates complying with this condition was created by using 

valid approved candidate observations and newly created random points. Synthetic implausible candi-

date observations were created by finding, for each valid, approved candidate observation, a random 

point situated away from known observations of the same species, but in a location with similar obser-

vation or tag density. This point was then assigned the same species. In this way, the spatial properties 

of the resulting synthetic candidate observations are similar to those of real observation data. Also, the 

thematic properties of this synthetic set in terms of species group composition and number of observa-

tions per species are similar to the set of approved candidate observations. Results with this set of syn-

thetic candidate observations tell us something about the approach’s ability to identify implausible 

observations which were made in areas with observation or tag density similar to neighborhoods of 

approved cases, but with probably differing observation or OSM context. 

Another set of synthetic implausible observations was generated in a similar way, but without any 

considerations concerning observation or tag density. Existing observations are mostly placed within 

clusters, and therefore points of this set are often placed in situations where observation density is 

lower, because random points within clusters are mostly ruled out due to their proximity to existing 

observations. Results with this set of synthetic candidate observations tell us something about the ap-

proach’s ability to identify implausible observations also in areas less visited by observes than the 

usual observation in a certain dataset. 

In contrast to the above considerations for synthetic implausible candidate observations, producing a 

set of synthetic plausible observations requires knowledge about locations where such a synthetic can-

didate would indeed be evaluated as plausible. It is not enough to place synthetic candidates for a spe-

cies simply close to known, approved observations of that target species, because approved observa-

tions are not necessarily plausible in light of their observation or tag context. A possible approach to 

find suitable locations is simply to apply the observed communities or OSM environments approach to 

plausibility estimation to a set of candidate observations (e.g., real, approved observations), then to 

select candidates which have a high plausibility, and finally placing synthetic candidates close to these 

plausible candidates. It is quite obvious that, with such an approach, it would be possible to produce a 

set of synthetic candidates with any degree of plausibility. It is, however, still useful to test the ap-

proach’s ability to identify plausible candidate observations. To this end, synthetic candidate observa-

tions were produced by finding, for each real, approved candidate observation which was evaluated as 

plausible, a random point close-by and assigning to this random point the same species as the respec-

tive plausible approved candidate. Thresholds for similarity values representing approved observations 

with a high plausibility were chosen so that they represent ca. 20% of valid approved observations in 

evaluation. Results with this set of synthetic candidate observations tell us something about the ap-

proach’s ability to identify plausible candidate observations in locations which should have an obser-

vation or OSM context reasonably similar to the candidate species’ observed community or OSM en-

vironment.  

Table 3.3.1 gives an overview of sets of plausible and implausible observations for both data use cas-

es, whose origin was explained above. In subsequent text, diagrams, charts etc., the set codes indicated 

in the table will be used. 
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Table 3.3.1: Sets of Candidate observation used for evaluation. 

  ArtenFinder Rheinland-Pfalz iNaturalist (California) 

 Set of candidates Data Set code Data Set code 
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Approved observations Observations 
accepted by ex-
perts 

AF_A Research grade 
observations 

iNat_A 

Synthetic plausible 
observations 

Random points in 
the vicinity of 
plausible accept-
ed observations 

AF_SP Random points in 
the vicinity of 
plausible research 
grade observa-
tions 

iNat_SP 
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s 
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b
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Observations rejected 
by experts 

Observations 
rejected by ex-
perts 

AF_R Not available - 

Synthetic implausible 
observations based on 
physically similar spe-
cies 

Swapped species 
identifications 
between accepted 
observations of 
physically similar 
species living in 
different habitats 

AF_SI1 Swapped species 
identifications 
between research 
grade observa-
tions of physical-
ly similar species 
living in different 
habitats 

iNat_SI1 

Synthetic implausible 
observations in similar 
density situations 

Random points 
away from ac-
cepted observa-
tions of a species, 
but in locations 
with comparable 
observation or tag 
density 

AF_SI2 Random points 
away from re-
search grade ob-
servations of a 
species, but in 
locations with 
comparable ob-
servation or tag 
density 

iNat_SI2 

Synthetic implausible 
observations in any 
location 

Random points 
away from ac-
cepted observa-
tions of a species 

AF_SI3 Random points 
away from re-
search grade ob-
servations of a 
species 

iNat_SI3 
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3.3.3 Acquisition, Preprocessing, Selection, and Partitioning of Observation 
Data for Evaluation 

ArtenFinder data used for evaluation 

ArtenFinder provides several possibilities of retrieving observation data and other information. Users 

can download their own observations as a csv file. There is also a REST API. Depending on the user’s 

role, it allows for downloading public data of all users, but also for changing or deleting data in the 

database. The API was used to download all public ArtenFinder observations up to 2016, with their 

validation status on February 24th, 2017 (latest download of the data). The data were placed in a local 

spatial database for further processing and analysis. ArtenFinder receives a few observations from 

regions adjacent to the federal state of Rheinland-Pfalz, which were discarded. In cooperation with 

naturgucker.de, another German citizen science initiative collecting observations of organisms, Arten-

Finder regularly imports naturgucker observations from Rheinland-Pfalz. These were also removed 

from the dataset used for analysis, because they have, at least in part, different properties, such as ras-

terized observation locations (coordinates representing map quadrat center points rather than the origi-

nal observation locations to protect occurrences of sensitive species), or locations referring to the cen-

ter point of an arbitrary area rather than to an exact observation location.  

Accepted observations up to 2015 (216,316 observations) were used to generate observed communi-

ties and OSM environments. Accepted observations of the year 2016 (68,646 observations) were used 

for producing a set of candidate observations expected to contain predominantly plausible observa-

tions (set AF_A, see Table 3.3.1). This approach of partitioning the data into older observations for 

extraction of observed communities or OSM environments, and new observations used as candidates, 

reflects the fact that the assessment of the plausibility of a recent candidate observation with the ob-

served communities or OSM environments approach is always and necessarily based on older ap-

proved observations. This way of partitioning the data therefore is more appropriate here than, for 

instance, selecting a random sample of accepted observations to be used as candidate observations 

from the whole time period. Evaluation should show whether the approaches to plausibility estimation 

are suitable for estimating the plausibility of new observations based on older pre-existing observa-

tions, which can be achieved in this way. Moreover, using a whole year of observations as candidates 

in evaluation minimizes any seasonal biases in evaluation results: if only data of a certain part of a 

year would be used, this would introduce a bias towards species observed in that season.  

The data properties of the two data portions of approved observations (up to 2015, and from 2016) do 

not exhibit important differences. This shows that the observation process did not change in a critical 

way between these two time periods. In both sets of observations, birds, butterflies, dragonflies and 

plants make up most of the observations, with the same ranking of species groups. In 2016, birds make 

up a somewhat higher part of observations when compared to the data up to 2015, while the rate of 

butterflies (and some groups with smaller portions in the data) was slightly lower, see Table 3.3.2. 

More information about the composition of the dataset concerning species groups and development 

over time can be found earlier in section 2.1.1.  
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Table 3.3.2: Portions of species groups in sets of accepted ArtenFinder observations. Comparison of 
values for accepted observations up to 2015 and accepted observations from 2016. 
Species group Portion (%) up to 2015 Portion (%) 2016 

plants 6.7 5.5 

fungi 1.9 3.4 

mammals 2.4 1.9 

birds 41.8 48.9 

reptiles 1.7 1.1 

amphibians 1.6 1.0 

modern bony fishes 0.1 0.0 

butterflies and moths 28.9 24.2 

hymenopterans 0.7 0.8 

beetles 0.8 0.6 

dragonflies and damselflies 9.2 10.3 

mantids 0.1 0.1 

locusts 3.4 1.5 

mollusks 0.3 0.2 

true bugs 0.1 0.1 

spiders 0.0 0.1 

The ArtenFinder API was also used to retrieve quality assurance protocol data. These data store status 

changes for all observations processed in the project’s quality assurance process, providing the oppor-

tunity to find IDs (identification numbers) of rejected observations. This is rarely possible in projects 

of this kind, because observations which are rejected are usually quickly corrected or deleted, or re-

ferred back into the private data spaces of the observers, where they cannot be easily accessed. In the 

case of ArtenFinder, it was possible to access the IDs of rejected observations, by means of quality 

assurance protocol data (kindly made available to the author by the project lead). They do not, howev-

er, provide the positions of these observations, or their species identification. It was therefore neces-

sary to collect, at regular intervals, observations not yet validated by experts (available via the pro-

ject’s public API), which contain coordinates and species identifications, and later harvest from this 

list the observations which were eventually rejected using the observation ID numbers from the quality 

assurance data. It was also possible to filter out observations which were rejected in the first place, but 

later accepted, e.g., because the observer provided more information. In this way, observations coukld 

be retrieved which were permanently rejected by the experts in the validation process to form set 

AF_R. They provide a valuable basis of analysis, especially for the evaluation of the plausibility esti-

mation approaches laid out here, because they allow for comparing similarity values of real observa-

tions which were accepted as correct, with real observations which were rejected as incorrect (or for 

other reasons, see section 2.1.1). These two sets of candidate observations allow for analyzing whether 

approved or rejected observations differ in their plausibility estimations.  

Extraction of rejected observations used all available rejected observations, including 2016 as well as 

earlier observations. Therefore, there is no clear partition between recent and older observations here. 

However, this was necessary to arrive at useful numbers of valid observation cases: 6,845 rejected 

observations were available, and for 2,733 of them coordinates could be retrieved. As rejected obser-

vations are not at all used for extracting observed communities, there was no conflict here concerning 

data partitioning. The composition of species groups in this set is markedly different from, e.g., ap-

proved observations: butterflies are leading at 25%, followed by observations of “other species” 

(24%), dragonflies (18%), birds (6%), plants (6%), mushrooms (5%), and locusts (5%). This may be 
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caused by a higher rate of species which are hard to identify in the insect species groups, causing a 

higher rate of rejections in observations of these groups when compared, for instance, to birds. 

All sets of candidate obsevations presented here show a similar overall spatial distribution of observa-

tions, reflecting the same northwest to southeast trend of increasing observation density. This is 

demonstrated by comparing quadrat count maps for these sets of observations, see Figure 3.3.2. Sec-

tors of maximum concentration of observations are, however, slightly different. 

a) All accepted observations  
(n = 284,962) 

 

b) Accepted observations up to 2015  
(n = 216,316) 

 
c) Accepted candidate observations (2016)  
(n = 68,646) 

 

d) Rejected candidate observations with  
coordinates (n = 2,733) 

 
Figure 3.3.2: Spatial distribution of observations in sets of ArtenFinder data. (No. of points in 10x10 
km raster. Classified by Natural Breaks. Source of Rheinland-Pfalz state line: LANIS Rheinland-
Pfalz.) 

iNaturalist data used for Evaluation 

iNaturalist provides the possibility to download their data as a csv file. This was used to retrieve all 

iNaturalist observations for the state of California on March 3rd 2017. California was chosen as the 

area of interest of this data use case, because the iNaturalist data record is strongest there (see also 

section 2.1.2). Observation numbers are comparable to those of ArtenFinder, albeit spread over a 

much larger area. Again, the data were placed in a local spatial database for further processing and 

analysis. iNaturalist obscures coordinates of certain observations, mostly to protect rare or sensitive 

species. Also, observers can choose to obscure coordinates of observations for privacy reasons. Obser-

vations with obscured coordinates were removed from the dataset used here, because their coordinates 

do not represent the true location of observation.  
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Data partitioning followed the same principles for iNaturalist data, as already used for ArtenFinder 

data. Research grade observations from California up to 2015 (242,833 observations) were used to 

generate observed communities or OSM environments. Research grade observations of the year 2016 

(167,723 observations) were used as a set of plausible candidate observations based on approved ob-

servations. There is no way of identifying observations rejected in the iNaturalist dataset, due to the 

differing quality assurance strategy employed here.  

Table 3.3.3: Portions of species groups in sets of research grade iNaturalist observations. Compari-
son of values for research grade observations up to 2015 and research grade observations from 2016. 
Species group Portion (%) up to 2015 Portion (%) 2016 

plants 33.4 35.1 

fungi 2.3 4.7 

mammals 4.2 3.9 

birds 32.0 26.7 

reptiles 5.2 5.1 

amphibians 1.6 1.8 

modern bony fishes 0.4 0.3 

butterflies and moths 6.7 6.1 

hymenopterans 1.1 1.5 

beetles 1.2 1.8 

dragonflies and damselflies 1.7 1.4 

earwigs 0.1 0.1 

mantids 0.1 0.1 

cockroaches 0.0 0.1 

locusts 0.3 0.5 

crustaceans 0.8 1.3 

mollusks 5.1 6.0 

other species 2.1 2.3 

true bugs 0.6 0.9 

flies 0.2 0.3 

spiders 0.8 0.0 

Although yearly observation numbers are strongly increasing in iNaturalist (see section 2.1.2), data 

properties of the two sets of research grade observations (data up to 2015, and from 2016) are not crit-

ically different, which shows, again, that the observation process did not change over time in a critical 

way (see Table 3.3.3). In 2016, plants make up a slightly larger part of observations when compared to 

the data up to 2015, while the rate of birds was somewhat lower. Figure 3.3.3 demonstrates that these 

two sets of data also show a similar spatial structure, with similar regions of higher and/or lower point 

density.  

  



72 3.3 Evaluation Methods 

 

a) All research grade observations  
 (n = 410,556) 

 

b) Research grade observations up to 2015  
(n = 242,833) 

 
c) Research grade observations in 2016  
(n = 167,723) 

  
Figure 3.3.3: Spatial distribution of observations in sets of iNaturalist data. (No. of points in 20x20 km 
raster. Classified by Natural Breaks. Source of state line: U.S. Geological Survey 2016). 

3.3.4 Source of OSM Data and Tag Selection 

For the purpose of this work, OSM data from the two study areas (Rheinland-Pfalz and California) 

were used, paralleling the areas of interest from which the data use cases of casual citizen science ob-

servations were taken. The general properties of the OSM project and its data are described, discussed, 

and compared to those of ArtenFinder and iNaturalist in chapter 2. Evaluation of the OSM environ-

ments approach was conducted with OSHDB41, a tool for analyzing OSM full-history data. This tool 

allows for running queries that produce results grouped by thematic or temporal parameters. The 

OSHDB software is developed and maintained by HeiGIT (see also section 2.1.3). Regional OSM 

extracts provided by HeiGIT and used in this work were produced in January 2018 (for California) and 
                                                      
41 https://github.com/giscience/oshdb 
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March 2018 (for Rheinland-Pfalz). For evaluation of the OSM environments approach, a consistent 

state of OSM at 2017-07-01 was used.  

From the entirety of tags which are currently supported or used in OSM, such tags were selected 

which are potentially relevant for describing an observation’s environment in the form of OSM fea-

tures and their attributes. This excludes, for the most part, tags subsumed under “Additional proper-

ties”42, such as names, address information, opening hours etc., which do not characterize the physical 

environment. The bulk of tags selected for this work come from the “Primary features” group of keys. 

These describe, for the most part, elements of the physical environment and their properties. For some 

of these keys, such as “Natural” or “Landuse”, all available values were deemed relevant and thus all 

tags included in the selection of relevant tags. For other keys, a selection was made from available 

values, again excluding mostly values which do not characterize the (relevant) physical environment. 

Examples for such cases are “amenity=parking” (designating a parking lot, which is a relevant physi-

cal element of settled areas, and therefore selected) vs. “amenity=atm” (designating an automatic teller 

machine, and therefore not selected). The “properties” group of keys also has several keys which are 

obviously relevant, such as “leaf_cycle=*” (evergreen, deciduous, etc.) or “leaf_type=*” (broadleaved, 

needle leaved, etc.) and some others which are not so obvious but may still be relevant, such as 

“bridge=*” (with different types) or “cutting=*” (for roads incised in the land surface). Selection re-

sulted in 757 tags with 44 distinct keys, see appendix, section 7.2. 

 

 

                                                      
42 https://wiki.openstreetmap.org/wiki/Map_Features, last accessed on 2018-11-18 
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3.4 Sensitivity Analysis: Effects of Modifications of Input Parameters 
and the Methodology 

The observed communities approach and the OSM environments approach to plausibility estimation of 

casual citizen science observations of organisms were evaluated with a basic methodology and a spe-

cific set of parameter settings (presented in sections 3.1 and 3.2), to understand their principle func-

tionality and to prove the general concepts of the approaches. The evaluation methods and workflow 

were explained in detail in section 3.3. Parameter settings are, however, not necessarily fixed to the 

values used in evaluation. Application of the approaches with other data use cases might require other 

settings, or domain experts might ask for other parameter settings for reasons arising from certain do-

main-specific considerations. For instance, a higher threshold for identifying nonspecific species 

might be required to avoid that certain species are considered as nonspecific, or larger search radii 

might make sense in certain data contexts with a lower spatial data density, to allow for more candi-

date observations to be assessed. Also, there are certain methodological modifications which might 

make sense, such as using quantitative information in similarity calculation, instead of the binary indi-

ces used in evaluation in this work. But what effects will these changes and modifications have on the 

approaches’ behavior and consequently on evaluation results? And will the approaches basically con-

tinue to work under these conditions? 

Effects of changes in input parameters and effects of methodological modifications can be tested with 

so called sensitivity analysis. In a review of this field with a focus on sensitivity analysis of environ-

mental models, Pianosi et al. (2016) found that there are many possible approaches to this task. Here, 

sensitivity analysis consisted in conducting evaluation experiments with changes to certain input fac-

tors and with some methodological modifications, and in comparing results of these experiments most-

ly visually to the original evaluation results. Pianosi et al. (2016) call this approach to sensitivity anal-

ysis a “One-At-a-Time (OAT) method” and classify the approach chosen here as a “perturbation 

method”, with one-by-one variation (perturbation) of input factors and visual inspection of results 

(Pianosi et al 2016, p. 219). This approach to sensitivity analysis was chosen because it is a suitable 

procedure for cases with a relatively low number of input factors or methodological modifications 

which are to be examined. The main goals were to gain an insight into the mechanics taking effect 

when parameter settings are changed or the methodology is modified in certain ways, and to see how 

robust the methods are against these parameter changes and methodological modifications. Some of 

these may also hold the potential to improve the approaches’ performance as plausibility indicators in 

general or at least for the data use cases at hand. 

Sensitivity analysis was mostly conducted on the observed communities approach only (except one 

specific methodological modification which was tested in the OSM environments approach, see be-

low), because both approaches have analog methodological structures, and at least some of the results 

can be expected to be analogous for both approaches. However, future work should certainly examine 

also the sensitivity of the OSM environments approach more closely, to prove or disprove this as-

sumption.  

Changes to the following input factors were introduced to the observed communities approach one by 

one, and effects on results examined: 

 minimum number of approved observations of a target species necessary for extracting an ob-

served community, 

 size of the search radii applied for defining the relevant context during observed community 

extraction, as well as for candidate context extraction, 
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 frequency threshold for identifying frequently associated species in observed communities, 

and 

 frequency threshold for identifying nonspecific species in observed communities. 

The following changes to the methodology were tested to assess their effects on the behavior of the 

respective approach: 

 use of auxiliary land cover related information when defining the relevant search area for ob-

served community extraction, as well as for candidate contexts,  

 use of quantitative information about the species in observed communities and those found 

around a candidate observation, and use of a suitable quantitative similarity index,  

 introduction of a guard zone for edge effect correction in the observed communities approach,  

 use of a modified Simpson index with a more straightforward interpretation of index values in 

the observed communities approach, and 

 using date-specific OSM context in the OSM environments approach.  

The following subsections explain the details of parameter changes and methodological modifications 

whose effects were examined. 

3.4.1 Using a Lower Minimum Requirement for Target Species Observations 

In evaluation, a conservative minimum number of 100 observations were required from a target spe-

cies for observed communities extraction, to avoid bias towards few observation situations represented 

in these observations. While this is a valid concern, it can be argued that, from a VGI perspective, the 

observed community cannot be biased, because it always represents the observation situation of the 

species in the dataset. An observed community based on just a few observations is realistic in that 

sense, if only a few such observations are available. There are also ecological arguments for a not too 

high threshold here (personal information D. Frank, ArtenFinder project, 07-2017): species with only a 

few observations may be rare species strongly specialized in a certain habitat, so that only a few ob-

servations are available. In such a case a few observations may be enough to describe the species’ 

context adequately also from an ecological perspective, because the species occurs only in the habitat 

the observations come from. Still, with a smaller number of target observations, an observation with a 

rather untypical context can exert a stronger influence on the properties of the resulting observed 

community than in cases with more target observations. Therefore, a minimum threshold of just 10 

approved observations for a species to qualify as a target species for observed community extraction 

was tested, to investigate the effect of such a change to the results achieved with the approach. 

3.4.2 Using Variable Search Radii 

The observed communities approach was evaluated with a search radius (uniform for all species 

groups) of 1,000 m, for defining the relevant neighborhood of an observation both when extracting 

observed communities and the species observed around a candidate observation. However, species 

groups (and, strictly speaking, even single species within them) have different properties as to the size 

of habitats, mobility, and behavior, factors which might influence the size of the area in which an indi-

vidual interacts with its environment. This might in turn have an influence on which species are asso-

ciated with it, and thus which species are observed in association with it. It might therefore be benefi-

cial to use different search radii for different species groups.  
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The plausibility tool developed for the quality assurance process of the ArtenFinder project (Jacobs & 

Schotthöfer 2015) provides the possibility to set different search radii for different species groups, and 

even for single species, when extracting the list of species surrounding a candidate observation. The 

rationale behind this feature is that a specific search radius might lead to a more specific list of associ-

ated species, which describes the candidate observation’s environment more accurately. This reason-

ing is backed by the professional beliefs of the ArtenFinder experts who are charged with validating 

the project’s observations and who were consulted in the development phase of the plausibility tool. 

However, the feature has so far not been actually used (no specific search radii set for species groups 

or species) because the results provided by the tool component in question have proved to be difficult 

to use due to several reasons (already explained in section 2.1.1). The component, although operation-

al, is therefore not actually used in ArtenFinder quality assurance practice so far, and therefore did not 

affect ArtenFinder data in any significant way. The validity of the arguments for variable search radii 

quoted above is therefore untested so far. 

To test the effects of assigning group-specific search radii in this work, a larger radius of 3,000 m was 

chosen for birds and mammals. Insect groups such as butterflies and dragonflies were assigned a 

search radius of 2,000 m, and the search radius for other species groups, especially plants, was left at 

1,000 m. These values reflect results of discussions with experts from the ArtenFinder project con-

ducted during development of the plausibility tool for that project. Larger search radii can be expected 

to produce larger observed communities and also larger candidate contexts, because more context 

observations are considered. 

3.4.3 Shifting Frequency Thresholds for Frequent Co-Observations and Non-
specific Species 

Two important steps in the process of creating observed communities are their restriction to context 

species which are frequently associated with the target species, and filtering of nonspecific species 

which are part of many observed communities at the same time. It was already said that there is no 

obvious way to determine the frequency thresholds used for these two processing steps. In evaluation, 

an intermediate value of 0.5 was used for both. However, other threshold values might be required for 

various reasons, when the observed communities approach is applied to different use cases. Basically, 

a higher frequency threshold to find species frequently associated with a target species will exclude 

more context species from an observed community, while a lower threshold value will allow for more 

context species to be included. A more strict frequency criterion for nonspecific species will lead to a 

smaller number of species being classified as nonspecific species, while a less strict criterion will take 

effect to the contrary. How does a shift of these thresholds, either upwards or downwards, affect the 

properties of results? Effects on evaluation results were examined with new threshold values of 0.25 

and of 0.75. 

3.4.4 Using Auxiliary Land Cover and Ecological Land Unit Information 

Besides examining the effects of parameter changes on evaluation results, experiments introducing 

alterations to the methodology itself were also conducted. While the general methodological frame-

work of the observed communities approach was kept intact, the first of these experiments examined 

the effects of introducing auxiliary land cover information into the way relevant search areas are de-

fined when looking for context observations around a target observation in observed community ex-

traction, or when extracting the context of a candidate observation. 
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In evaluation, the method used a circular search area to find relevant context observations both for 

observed community extraction and for finding a candidate context. This procedure will always in-

clude context observations which were made in the same habitat in which the target observation is 

situated (e.g., a stretch of forest, or a meadow), while some context observations included in the search 

area may be situated in neighboring habitats, so that they potentially do not belong to the target obser-

vation’s relevant context. A classic example would be a species which is typically living in open habi-

tats such as fields or meadows and is therefore part of a natural community of species which share this 

preference. Most search areas will include only context observations which are situated in open habi-

tats as well, but some contexts of target observations situated at the edge of the habitat may include 

observations in a neighboring forest or settled area. If these are numerous enough, they will introduce 

associations into the target species’ observed community which do not make sense from a biological 

or ecological point of view. 

Such considerations depend, of course, on a number of factors. Target observations situated in small 

habitats, such as small ponds or streams, will always have many context observations from neighbor-

ing habitats (given that neighboring areas do actually have observations) because small habitats them-

selves cover only a small portion of the search area. As already pointed out, target observations on the 

edge of a habitat will have context observations in neighboring habitats, while target observations well 

within (large) habitats do not. Many species use diverse habitats during different times (daytime or 

season), or for different behaviors (resting, feeding, breeding, etc.) and their relevant context therefore 

comprises different situations. Also, observations may accidentally be placed by the observer outside 

of the habitat where the observation was actually made. Such a misplacement may be also be caused 

by imprecision of the location device (e.g., a GPS device in a smart phone), or by inaccuracies of the 

base maps which are provided by the application used for reporting (Spyratos et al. 2014). Often, there 

is also a spatial offset between the observer’s location and the location of the observed individual, 

which may or may not be corrected by a (more or less accurate) estimation of the individual’s true 

location by the observer. With (very) mobile animal species, all of these considerations are overlain by 

the fact that individuals may be observed in places which do not provide habitat functions to them at 

all. For instance, a high-flying flock of migratory birds may be observed above almost any kind of 

habitat. On the other hand, observations of species with low or no mobility, especially sessile animals 

and plants, suffer only to some degree from some of the factors discussed above. Still, these considera-

tions add up to a quite impressive list of uncertainties affecting locations of casual citizen science ob-

servations of organisms relative to habitats, and thus also affecting results of spatial analyses of these 

data. 

The methodological change which is introduced here consists in the additional use of a suitable data 

source representing habitat-related boundaries in defining search areas around an observation. In this 

approach, relevant search areas include only that part of the circular search area defined by the search 

radius which is also part of the habitat-related area in which the target observation is situated. Figure 

3.4.1 gives an example: an ArtenFinder observation of the butterfly species Common Blue (Polyom-

matus icarus) is situated in a grassland area (light brown), with neighboring forest (greens), fields 

(tan) and an industrial area (purple) within 1,000 m search radius. Now, only observations in the grass-

land area are considered to be associated. In this procedure, the actual land cover type does not play a 

role. Only the boundary, or, technically speaking, the polygon geometry within which a target obser-

vation is situated is used to restrict the relevant search area for context observations. This principle 

was applied in observed community extraction and in candidate context extraction in the same way. 



78 3.4 Methods, Sensitivity Analysis 

 

 
Figure 3.4.1: Schematic view of the basic principles of extraction of co-observations, using auxiliary 
polygons for focusing the search area. (Source of observations: ArtenFinder Rheinland-Pfalz. Red 
point: target observation; red circle: 1,000 m search radius; pink points: resulting associated obser-
vations; blue points: other observations. Source of polygons: CORINE land cover 2012 CLC1043) 

True habitat information covering large areas without gaps is not available. To produce it is time-

consuming and costly, and such information is therefore mostly captured for small areas such as, at 

least in Germany, one or several neighboring districts (“Gemarkungen”) at most, which is often done 

for planning purposes. While some municipalities (again, at least in Germany) possess such infor-

mation, often even in digital form, bringing it together and harmonizing it would be a worthwhile yet 

very costly endeavor. Public authorities also provide data on certain protected habitat types (e.g., habi-

tats protected by German nature protection law, or by the European Natura 2000 system), but they are 

not comprehensive, covering only certain habitat types. It was therefore necessary to choose auxiliary 

data which provide an approximation to this kind of information and which is comprehensive. A pos-

sible substitute which can be considered for this approach is land cover data. For the ArtenFinder data 

use case, which is situated in Europe, CORINE (“Coordination of Information on the Environment”) 

land cover data provide a relatively up-to-date source of such information. Moreover, the freely avail-

able 2012 CLC10 product, with its 10 ha minimum size of area units, can be considered to have a suit-

able geometric resolution for the task at hand (“CLC10” stands for CORINE Land Cover, 10 ha as 

smallest area units). Of course, any land cover unit with small dimensions below this threshold is not 

represented in the data. This leads to an underrepresentation of land cover units which have small ex-

tents, such as small to medium-sized waterbodies, hedges, groves, isolated buildings, etc., in favor of 

large, coherent units such as forests, larger bodies of settlements, agricultural land, and others. There-

fore it is far from representing true habitat information. However, it can still serve for providing poly-

gon geometries which might be useful for the purpose at which this experiment is aimed: to render the 

search area for a target observation’s context more precise than just using a circle, and to do so in a 

meaningful way. Data with too fine a geometric resolution might restrict resulting search areas too 

much, leading to too small context observation numbers for the approach as a whole to work, except, 

                                                      
43 © GeoBasis-DE / BKG 2017 



3.4 Methods, Sensitivity Analysis 79 

maybe, in regions with very high spatial observation densities. CORINE land cover data for Germany 

are available from the download site of the Federal Agency for Cartography and Geodesy (Bundesamt 

für Kartographie und Geodäsie, BKG), from where a shapefile was downloaded, then transferred to a 

spatial database for further processing. Documentation for the data is available from the same source. 

The dataset provides a continuous set of polygon geometries based on land cover information derived 

from Landsat multispectral remote sensing data. CORINE land cover data use 44 distinct land cover 

classes, of which 27 classes are present in Rheinland-Pfalz. Table 7.3.11 in the appendix lists these 

classes. 

CORINE land cover data are only available for Europe. For the iNaturalist data use case, the most 

suitable source of polygon geometries based on land cover is the NLCD (National Land Cover Data-

base) 2011 Land Cover (2011 Edition, amended 2014). Similar to CORINE, this dataset also derived 

from Landsat satellite imagery. It has a somewhat smaller thematic resolution, with 20 classes, of 

which 16 occur in California. However, the original NLCD dataset has a much higher spatial resolu-

tion, with smallest units of ca. 0.1 ha (corresponding to the 30x30m spatial resolution of Landsat im-

agery). It was therefore necessary, for reasons explained above, to raise minimum size of polygon 

geometries. This was achieved by converting the spatial resolution to 316.23x316.23 m, corresponding 

to ca. 10 ha, the minimum spatial unit size of the CORINE data used. In this way, the sensitivity anal-

ysis could be conducted with land cover data with smallest polygons having the same size for both 

data use cases, but at the cost of a lower-than original geometric resolution in NLCD data. Thematic 

resolution in NLCD data was not reduced by the applied conversion. Table 7.3.12 in the appendix lists 

the relevant NLCD land cover classes. 

Another interesting dataset, which is globally available, are Ecological Land Units (ELUs), developed 

in a joint effort by USGS and ESRI. In this dataset, geographic information on bioclimates, landforms, 

lithology, and land cover are consolidated into a single information layer. Sayre et al. (2014) describe 

in detail the dataset’s source data, methods of generation, and properties. They also provide a detailed 

discussion of the terms ecosystem and habitat. The authors elucidate that the ELUs are regarded as 

ecosystems, and that ecosystems are mostly encompassing multiple habitats, while habitats are a con-

cept mostly referring to a particular species. They also observe that land cover information usually has 

an emphasis on vegetation structure, at least outside settled areas. Thus, both ELUs and land cover 

units are only approximations to the habitat structure of an area. The ELU data used for analysis here 

have a geometric resolution of 250 m, which is comparable to the CORINE and (processed) NLCD 

data described above. What distinguishes the ELU data is their far greater thematic resolution of 3,923 

classes worldwide, of which 140 occur within Rheinland-Pfalz, and 789 within California. However, 

as explained above, the thematic resolution is of little consequence as the thematic information is not 

directly used in this methodological modification. In the Rheinland-Pfalz area of interest, ELUs have a 

mean size of 780,989 m2, which is very close to the CORINE data’s value for that region (854,762 

m2). In California, both the processed NLCD data (1,956,905 m2) and ELUs (2,821,663 m2) have no-

tably larger areal units, on average. 

The experiments conducted with the data described above allowed both for examining the effects of 

the use of auxiliary geometries for search areas in general, as well as for investigating whether ELUs, 

with their extended thematic basis, hold a higher potential for positively influencing results, than does 

“pure” land cover information. However, it should be noted that this modification of the methodology 

introduces an extrinsic element into the observed communities approach, which therefore cannot be 

considered to be an altogether intrinsic approach anymore (following the definition used in this work 

and laid out in section 1.4) if this modification is applied. Also, restricting search areas by using auxil-

iary polygon geometries will generally lead to smaller search areas and thus smaller amounts of con-
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text observations which can be evaluated, from which a drop in numbers of valid observed communi-

ties and candidate observations can be expected. 

3.4.5 Using a Quantitative Similarity Index 

The observed communities approach was evaluated with two so-called binary similarity indices, which 

means that the information they are using is just the presence or absence of a species in the species 

lists which are compared. There also exist similarity coefficients which use some quantitative infor-

mation about the observations involved. The goal in the sensitivity analysis described here was to ana-

lyze whether quantitative instead of binary similarity calculation is able to produce better results in 

terms of discrimination of plausible or implausible observations. 

Zuur et al. (2007) present a quantitative similarity coefficient, called the Similarity Ratio, which can 

be viewed as the quantitative counterpart of the Jaccard index, because its results are identical to those 

of the Jaccard index if used with binary data. Using the notation from Zuur et al. (2007), this coeffi-

cient can be represented as follows: 

F3: Similarity Ratio  SR =
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Yk and Xk represent quantitative information about a species k at the sites Y and X. Usually abundance 

is used for quantification, that is, the observed number of individuals of a species. Reliable abundance 

information is usually not available from casual citizen science observations of organisms, and this is 

also the case for the two datasets used in this work. What is available, however, is the frequency of 

observation of a context species close to a target or candidate observation. This parameter is, of 

course, quite different from real abundance, in that it measures the frequency at which a species was 

observed by volunteers. It does not represent the number of observed individuals of a context species. 

Each observation represents at least one individual, but it is unknown how many individuals were 

actually present. In many cases, it is even quite probable that the same individual was observed many 

times at the same place, by the same observer, or by several observers, during a shorter or longer peri-

od of time. This creates a seeming abundance which has its roots in the perpetual nature of the obser-

vation process and ultimately in the VGI nature of the data collection process. Observation frequency 

measures the abundance of observation events, not the abundance of the species. It can certainly be 

argued that observation frequency is a function of species abundance: more abundant species are more 

likely to be observed than less abundant species, especially by relatively untrained volunteers. Many 

other factors might also play a role, especially detectability, observer-related factors (e.g., their inter-

ests and abilities), and more. Using this parameter therefore adds information originating from the 

biological and ecological properties of the species, as well as from the VGI nature of the data collec-

tion process. In similarity calculation, this parameter gives a larger weight to species which are ob-

served more often in the context of an observation, for various reasons. Context species which were 

more frequently observed are thus more important in describing the context as a whole, than are less 

frequently observed species.  

In observed community extraction, the mean observation frequency of a context species in all target 

species contexts (including cases with no observation of a context species) was used to set this param-

eter. In candidate contexts, where a single candidate observation is considered in each candidate case, 

observation frequency simply represents the frequency of observations of a context species around the 

candidate case. This parameter was used as a substitute for abundance in calculating the Similarity 
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Ratio between candidate contexts and observed communities in a sensitivity analysis for examining 

the effects of this modification to evaluation results.  

A quite different approach of adding a quantitative dimension to the observation data used for similari-

ty calculation is to use distances of context observations to the target or candidate observation. For 

geographic data, this is a natural notion of weighting the relationship of objects. Context observations 

which are closer to a target or candidate observation could be considered to be more important to de-

scribe the context, than are observations which are further away. To test the effect of this information 

on evaluation results in a proper sensitivity analysis, an inverse distance weighting was introduced, by 

calculating the distance of a context observation to the target or candidate observation, converting it to 

percent of search radius (thus making the value independent of the size of the search radius used), and 

inverting it. There is thus a linear growth of the weight with decreasing distance to the observation. 

For context species with more than one context observation, the mean distance of all context observa-

tions to the target or candidate observation was calculated. These values were then used to weigh spe-

cies in Similarity Ratio calculation. A unified search radius of 1,000 m was kept as the maximum dis-

tance of relevant context observations used in this procedure. 

3.4.6 Examining Edge Effects 

An issue which should always be considered in analyses such as the one presented here, are edge ef-

fects. These arise in this methodology because any observation which is closer than the search radius 

to the edge of the area of interest has a neighborhood including a part which lies outside of the area of 

interest and therefore does not have context observations. Evaluation was conducted without any edge 

effect correction, because no critical effects on evaluation results were expected. O’Sullivan and Un-

win (2010) discuss edge effects on distance based point pattern measures and point out that edge ef-

fects are usually relevant only in cases where the number of events (here: the number of observations) 

is small. This is certainly not the case in this study, which is why edge effects were not corrected in 

evaluation. The ArtenFinder project focuses on the area of the federal state of Rheinland-Pfalz. There 

are a limited number of observations in areas adjacent to Rheinland-Pfalz, because volunteers’ interest 

in observing species does not necessarily stop at the state line. The project portal allows for submitting 

observations also from areas outside of Rheinland-Pfalz. However, observation numbers decrease 

rapidly in these areas, and observations outside of Rheinland-Pfalz were not used in this work. In the 

iNaturalist use case, California was chosen as the area of interest. However, iNaturalist observations 

rather concentrate in the coastal areas of California (see section 2.1.2), so that edge effects caused by 

choosing the state line as the spatial limit of the data use case can be expected to be low, because there 

are only relatively few observations close to the state line.  

Edge effects caused by state lines should be examined for both data use cases, to gain an insight in 

how far they might influence evaluation results presented here. This was done in a sensitivity analysis 

using a guard zone approach (O’Sullivan and Unwin 2010). Guard zones were produced by creating 

an inner buffer in the area of interest of 1,000 m along state lines. Only observations not situated in 

this zone were then used as target observations in observed community and candidate context extrac-

tion, while context observations could also be situated within the guard zone. As the new target and 

candidate observation data have a reduced spatial extent, results using edge effect correction cannot be 

compared to the original evaluation results. A proper set of evaluation results with reduced spatial 

extent and without edge effect correction was calculated to provide a suitable basis of comparison to 

evaluate effects of the edge effect correction. iNaturalist data with their global scope, which are theo-

retically able to provide a true guard zone outside the California state line, were treated likewise to 

maintain methodological consistency.  
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3.4.7 Overcoming Ambivalent Information of Simpson Index Values 

The two binary similarity indices used in evaluation of the observed communities approach have dif-

ferent structures. The Jaccard index, on the one hand, calculates the ratio of the size of the intersection 

of two species lists and the size of their union. Therefore, all Jaccard index values are based on calcu-

lations using the same elements, and the resulting index value can always be interpreted as the rate of 

species which the two lists have in common in all species found in the two lists. The Simpson index, 

on the other hand, calculates the ratio of the size of the intersection of two species lists and the size of 

the smaller of the two lists involved. For the Simpson index, it is therefore not clearly determined 

which element is used as denominator. For the use cases and data used here, there are cases where the 

size of the observed community is used as denominator and other cases where the size of the candidate 

context is used. In the former cases, the index value is therefore the rate of observed community spe-

cies covered by the species found around the candidate observation. In the latter case, the index value 

represents the rate of observed community species found in the species surrounding the candidate ob-

servation. This problem arises from the fact that the two species lists involved are of different origin 

and (usually) of different size: observed communities represent a typical situation for a species’ obser-

vation which is aggregated from many observations of that species and reduced to frequent co-

observations, while the list of all species found around a candidate observation represents a single 

observation’s environment. The former is smaller, in most cases, than the latter. 

For the sake of a more straightforward interpretation of index values, it might make sense to derive, 

from the Simpson index, a variant by fixing the denominator to the size of the observed community. It 

can be defined as follows 

F4: Variant of Simpson index  Svar =
�
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where a is the number of species that both lists have in common (their intersection), and b the number 

of species unique to the observed community. Behavior of this variant of the Simpson index was test-

ed in a sensitivity analysis using the index variant, and results were compared to those with the origi-

nal Simpson index.  

3.4.8 Using Date-Specific OSM Context 

Sensitivity analysis was not conducted with the OSM environments approach to the same extent as 

conducted with the observed communities approach. However, sensitivity if the OSM environments 

approach was examined with respect to a methodological modification which probably has special 

relevance for this approach: the use of time-specific geographic OSM context. OSM is a highly dy-

namic data source. The dataset changes for several reasons:  

 OSM is still a young project whose data are still developing and becoming more complete. 

 The OSM project is itself a dynamic process accompanied by vivid discussions of many as-

pects within the OSM community, which lead to changes in project policy as well as in tech-

nology. 

 The real world is changing constantly, and many of the changes relevant to OSM are constant-

ly updated in the dataset by volunteers.  

Using OSM at a recent state allows for taking advantage of the most complete OSM data available. 

However, the above factors, especially real world changes reflected in changes to OSM data, may 

offer an advantage which may improve results. OSM allows for accessing the full history of all ele-
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ments ever recorded in its data. This provides the opportunity to examine the state of OSM at a past 

point in time. OSM might therefore reflect an observation’s geographic context as it was at the obser-

vation date. This might present an advantage over using a recent OSM state, because OSM context at 

the observation date might fit the actual observation situation better. 

Going back in time in this way has several consequences. The desired effect is, of course, that real 

world changes which happened since an observation was made in a certain place (e.g., construction of 

a residential area where fields used to be) are corrected for. This is especially relevant for observations 

used for OSM environment extraction, because these are always “historic” observations which may be 

several years old. Candidate observations are usually younger, at least in schemes such as ArtenFinder 

where new observations are soon evaluated. However, to use the full potential of the methodological 

change proposed here, it makes sense to also extract candidate contexts from OSM data specific to the 

observation date. Using an older state of OSM may also have undesirable effects, especially a lower 

completeness of data. Objects may not yet have been mapped, or improperly tagged. Also, errors may 

still have existed in earlier OSM data stages which were later corrected. Therefore, there are also good 

reasons for using OSM in its current state. A sensitivity analysis with date-specific OSM environments 

and candidate OSM contexts was conducted to test the behavior of the OSM environments approach 

with time-adapted OSM information and to compare results to those with recent OSM data used in 

evaluation. Making use of HeiGIT’s OSHDB (see section 3.3.4) allows for “turning back time” when 

extracting an OSM environment, or a candidate OSM context. It contains the full history of each OSM 

object, that is, all edits made to the data, back to 2007-11-01. Any query detecting the OSM content 

found around an observation can be set to the point in time at which the observation was actually 

made. In this way, all spatial queries on OSM concerning the neighborhood of an observation were set 

to the observation date, looking at OSM in the state it was in at the observation date. For technical 

reasons (mostly for reducing computing time), the actual query date was always set to the first of the 

month the observation was made in, leading to a maximum offset between the state of OSM and the 

date of observation of one month. 
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3.5 Taxonomy 

An important issue when dealing with biodiversity data is taxonomy. Different citizen science projects 

use different taxonomical systems. In analyses where observation data of two (or more) data sources 

are joined or mixed, this fact requires harmonization of taxonomy, e.g., by using appropriate online 

services (Jacobs & Zipf 2017). This problem is of no consequence in analyses which do not mix ob-

servation data of organisms from several different sources. The observed communities approach and 

the OSM environments approach are of this kind, and so is the evaluation methodology explained 

above. ArtenFinder Rheinland-Pfalz uses a taxonomy which corresponds to the species occurrence 

databases of the federal state of Rheinland-Pfalz, because ArtenFinder observations are collected with 

the goal of integrating them into these databases (see section 2.1.1). iNaturalist uses an extensive list 

of global and regional taxonomic authorities to build its taxonomic system and carefully explains the 

reasons for doing so in its curator guide44. One of the main reasons is founded in the citizen science 

nature of the project. Most taxonomic authorities’ information is freely and publicly available, so that 

all potential users, including amateurs, have access to it, other than, e.g., to many scientific publica-

tions on taxonomic issues. In this way, taxonomy has a maximum degree of transparency. iNaturalist 

curators, many of whom are recruited from experienced iNaturalist users, are provided with the au-

thority to change iNaturalist’s taxonomy and are encouraged to collaborate with other curators in do-

ing so. They are asked to adhere to certain rules explained in the curator guide mentioned above. 

In this work, observation data of the different projects were not used together in the same analyses, but 

always treated separately. It was therefore not necessary to harmonize taxonomies of the observation 

data used in this work, allowing for respecting the projects’ taxonomies. This implies that in subse-

quent chapters, some species names may appear which are considered to be outdated by most taxo-

nomic authorities, especially in ArtenFinder data. For instance, ArtenFinder still uses Parus caeruleus 

for Blue Tit or Parus palustris for Marsh Tit. For these species, Cyanistes caeruleus and Poecile pal-

ustris are mostly used nowadays, which is also the case in iNaturalist. This remains, however, without 

consequence for analysis here, because both datasets are not joined or mixed.  

Scientific names of species and of higher taxonomic levels may change over time. If a scientific name 

in a project’s taxonomy is changed, this change must be applied to the whole dataset, to avoid incon-

sistencies. However, for some changes, this is not a trivial task. iNaturalist’s curator guide elaborates 

that changes can be of several different types, which implicate different levels of difficulty: while a 

1:1 change in a (sub)species, genus, or higher level taxon is basically quite straightforward, a taxon 

split presents the most difficulties, because often the system cannot automatically decide to which of 

the new taxa an observation belongs. Where possible, iNaturalist uses information about the spatial 

distribution of species to resolve such cases, because often species are split by geographic criteria. 

However, problems introduced by overlaps of species ranges and other issues remain. Also, iNaturalist 

users can opt out of automatic taxonomy changes for their data, so that even in cases which can be 

automatically resolved, there is no guarantee that this will happen for all data.  

Taxon changes introduce some measure of uncertainty into the internal taxonomic consistency of the 

datasets, especially in relatively open systems such as the one applied in iNaturalist. The extent of this 

uncertainty is hard to gauge, but is probably small. For instance, certain users deciding to abide with 

an old taxon will probably remain the exception. Also, curators can be expected (and are asked by the 

curator guide cited above) to manually resolve most uncertain cases. To make an example from iNatu-

ralist, the species Cervus elaphus, which was formerly used for Red Deer in Europe as well as for 

Wapiti in North America, was split into C. elaphus (for Europe) and C. canadensis (for North Ameri-

                                                      
44 https://www.inaturalist.org/pages/curator+guide, last accessed on 2018-11-09 
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ca) in October 2017. As of 2018-11-09, just one observation of C. elaphus in North America (situated 

in Mexico) remained in the dataset, as opposed to 3,885 that were switched to C. canadensis. The ob-

server reasoned in this case that the species was introduced in the area the observation comes from and 

therefore properly labeled with C. elaphus. Thus, at least in this example unresolved cases did not 

persist.  

 

 

 

 





 

4 Results 

Distributions of similarity values of sets of candidate observations, and the differences between them, 

are the principle results of the evaluation. They demonstrate whether the observed communities ap-

proach and the OSM environments approach are basically able to estimate the plausibility of observa-

tions using similarity values. Evaluation also rendered more aspects about the observed communities, 

about the OSM environments and about the sets of candidate observations. They hold important in-

formation for the interpretation of the evaluation results and their discussion (see chapter 5) and are 

therefore also presented here. 

4.1 Evaluation of the Observed Communities Approach 

Evaluation of the observed communities approach was conducted using the methods described in sec-

tions 3.1 and 3.3, for both data use cases, with two different binary similarity indices (the Simpson 

index and the Jaccard index). Parameter settings used in evaluation were also described in section 3.1, 

and are summarized as follows: 

 Extraction of OSM environments: 

o Uniform search radius of 1,000 m for relevant neighborhood for all species groups, 

o target species: only species with 100 or more approved observations up to 2015, 

o frequency threshold for context species frequently observed in proximity to the target 

species: 0.5. 

o frequency threshold for nonspecific species (context species which are part of many 

observed communities at the same time, and therefore removed from the final ob-

served communities): 0.5. 

 Extraction of candidate context: 

o Uniform search radius of 1,000 m for relevant neighborhood for all species groups, 

o Nonspecific species removed from candidate contexts. 

 Comparison of similarity values: 

o Candidate cases restricted to cases where the size of both the observed community and 

of the candidate context is 10 or larger, 

o candidate observations of nonspecific species not used in analysis. 

4.1.1 Evaluation Results, Observed Communities Approach, ArtenFinder Data 

Similarity values 

Distributions of Simpson similarity index values for ArtenFinder data are shown in Figure 4.1.1, part 

a. Differences in distributions of similarity values are largest between approved observation data (set 

AF_A) or synthetic plausible candidate observations (set AF_SP) on the one hand, and sets of random 

synthetic implausible candidates (sets AF_SI2 and AF_SI3) on the other hand. Rejected observations 

(set AF_R) and synthetic implausible candidates based on physically similar species (set AF_SI1) are 

closer to AF_A and AF_SP. Table 4.1.1 summarizes the results of the statistical tests employed to 

examine these differences. Test results allow for accepting the alternative hypothesis (p ≤ 0.05) of the 

Mann-Whitney-U-Test for all comparisons of sets of accepted or synthetic plausible candidate obser-

vations and rejected or synthetic implausible candidate observations. Distributions of Simpson index 

values of accepted and synthetic plausible candidate observations are statistically different from distri-



88 4.1 Results, Evaluation of the Observed Communities Approach 

 

butions of Simpson index values of rejected or synthetic implausible observations according to this 

test. 

a) ArtenFinder, Simpson index 

 

b) ArtenFinder, Jaccard index 

 

  
Figure 4.1.1: ArtenFinder, distributions of Simpson and Jaccard similarity index values, observed 
communities approach. n(AF_A) = 22,426; n(AF_SP) = 1,486; n(AF_R) = 362; n(AF_SI1) = 1,718; 
n(AF_SI2) = 22,197; n(AF_SI3) = 22,896. 

Evaluation results with the Jaccard index, presented in Figure 4.1.1, part b, show that index values are 

overall much lower than with the Simpson index, which is to be expected considering the index’ struc-

ture (see section 3.1). AF_SP distribution, with high index values, is well distinguished from AF_SI1, 

AF_SI2 and AF_SI3, the latter forming a group of distributions with very low index values. AF_A 

Jaccard index distribution is closer to this group than to AF_SP, and AF_R is very close to AF_A. 

Analog to Simpson index results, results with the Jaccard index exhibit significant differences in dis-

tributions of similarity values between candidate observations accepted by validating experts (AF_A) 

or synthetic plausible candidates (AF_SP) on the one hand, and the sets of rejected candidate observa-

tions (AF_R) or synthetic implausible candidates (AF_SI1, AF_SI2, AF_SI3) on the other hand. Table 

4.1.2 summarizes these test results. Distributions of Jaccard index values of accepted and synthetic 

plausible candidate observations are statistically different from those of rejected or synthetic implausi-

ble observations according to this test. Figure 4.1.1, however, also shows that there are overlaps be-
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tween the distributions with both indices, with no perfect separation between sets of plausible or im-

plausible observations.  

Table 4.1.1 and Table 4.1.2 also give the results of the Fligner-Killeen-Tests conducted to examine 

whether variances in the distributions which are compared are homogeneous or not. This bears on the 

interpretation of the test results of the Mann-Whitney-U-Tests which were used to examine the differ-

ences between these distributions, see section 3.3.1. Results of the Fligner-Killeen-Test are significant 

in almost all cases, except AF_A vs. AF_R. This means that variances are not homogeneous in most 

cases.  

Table 4.1.1: ArtenFinder, results (p-Values) of Fligner-Killeen-Tests and of Mann-Whitney-U-Tests 
with AF_A, AF_SP and the four different sets of rejected or synthetic implausible candidate observa-
tions, Simpson index, observed communities approach. 
Simpson Index, AF_A vs. AF_R AF_SI1 AF_SI2 AF_SI3 

Fligner-Killeen-Test 0.3922 1.57*10-10 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test 1.155*10-12 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Simpson Index, AF_SP vs. AF_R AF_SI1 AF_SI2 AF_SI3 

Fligner-Killeen-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

 
Table 4.1.2: ArtenFinder, results (p-Values) of Fligner-Killeen-Tests and of Mann-Whitney-U-Tests 
with AF_A, AF_SP and the four different sets of rejected or synthetic implausible candidate observa-
tions, Jaccard index, observed communities approach. 
Jaccard Index, AF_A vs. AF_R AF_SI1 AF_SI2 AF_SI3 

Fligner-Killeen-Test 0.0005092 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test 1.657*10-7 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Jaccard Index, AF_SP vs. AF_R AF_SI1 AF_SI2 AF_SI3 

Fligner-Killeen-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Properties of Observed communities 

There are 291 (of 2,957) species with 100 or more accepted observations in the ArtenFinder data up to 

2015. After their lists of surrounding species are filtered for frequently associated species and for non-

specific species (both with a threshold of 0.5), 216 observed communities with 10 or more species 

remain. The list of species which are identified as nonspecific species has 46 species (see Table 5.1.7 

in the discussion chapter). These species and their observed communities are themselves not used for 

evaluation purposes, because, as nonspecific species, they can be considered to be species with rather 

unspecific list of associated species. Species composition of observed communities will be discussed 

in more detail later. 13 of them have observed communities with less than 10 species anyway, so that 

this consideration reduces the number of valid observed communities further to 183 species left for 

use in evaluation (with observed community sizes ranging from 10 to 119 species, mean: 31.7). Table 

4.1.3 gives an overview of these numbers for ArtenFinder data. 

Table 4.1.3: ArtenFinder, key numbers describing valid observed communities.  
No. of valid observed com-

munities 

Mean no. of species in ob-

served communities 

No. of nonspecific species 

 183  31.7  46 

Valid observed communities belong to 13 species groups. Most of them are birds (33.9%), followed 

by butterflies and moths (26.8%) and dragonflies and damselflies (16.4%). Together, the target species 
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of all valid observed communities represent 23,475 of the accepted candidate observations (AF_A), or 

roughly one third of the candidates in this set. Similar ratios apply to the other sets of candidate obser-

vations. The number of valid candidate observations is further reduced to a minor degree by the fact 

that some candidate observations have less than 10 context species.  

Properties of valid candidate observations 

Table 4.1.4 lists some key numbers describing the sets of valid candidate observations resulting from 

evaluation with ArtenFinder data. Sets of valid candidates are different in size because their source 

sets have different sizes (see section 3.3.2). Mean numbers of species in candidate contexts and mean 

numbers of species in observed communities associated to these cases also differ between sets: relative 

to the AF_A set, they are higher for AF_R (real rejected observations) and lower for AF_SP and 

AF_SI1. Mean numbers of context observations are lower for AF_R and higher for AF_SP and 

AF_SI1. Valid AF_R observations are thus situated in places with lower observation density, but 

higher observed species diversity, on average. AF_SP and AF_SI1 observations are found in contrari-

ous situations, if compared to the average AF_A case. Set AF_SI2 shows properties close to AF_A, 

because valid accepted observations form the base for its generation, and it was designed to mirror 

AF_A’s spatial properties (see section 3.3.2). AF_SI3 deviates strongly in the mean size of its candi-

date contexts and in observation density around candidates, which are both much lower due to the 

method of creation of this set (see section 3.3.2). 

Table 4.1.4: ArtenFinder, key numbers describing sets of valid candidate observations, observed 
communities approach. 

Set of  

candidates 

No. of valid can-

didate cases 

Mean no. of spe-

cies in  

candidate contexts 

Mean no. of spe-

cies in observed 

communities, per 

set of candidates 

Mean no. of con-

text obs. 

AF_A 22,426 108.2 34.7 1,225.4 

AF_SP 1,486 96.5 54.0 3,090.5 

AF_R 362 115.1 42.0 898.3 

AF_SI1 1,718 99.5 21.6 1,511.8 

AF_SI2 22,179 102.5 34.7 1,086.2 

AF_SI3 22,896 31.2 35.2 112.7 

Table 4.1.5 summarizes the species group compositions of the sets of valid candidate observations 

(that is, candidate observations actually used in evaluation). Due to the origin of AF_SI2 and AF_SI3, 

they are almost identical to AF_A. AF_SI1 and AF_SP have more birds and less butterflies than these 

two, and reptiles rank second in AF_SI1, instead of the group of dragonflies and damselflies. AF_R is 

dominated by dragonflies and damselflies, and all other species groups also strongly differ here from 

the other sets. Compared to the original composition of the accepted observations used as candidates 

(see Table 3.3.2), AF_A remains dominated by birds, while experiencing a boost in the group of drag-

onflies and damselflies. Butterflies and plants decline. 
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Table 4.1.5: ArtenFinder, portions of species groups in sets of valid candidate observations, observed 
communities approach. 

 AF_A AF_SP AF_R AF_SI1 AF_SI2 AF_SI3 

Species group (%) (%) (%) (%) (%) (%) 

plants 0.8 0.1 0.0 0.0 0.7 1.0 

fungi 0.3 0.0 0.0 0.0 0.3 0.4 

mammals 1.9 1.3 0.3 0.0 1.8 2.0 

birds 47.2 73.0 7.5 60.5 47.1 48.0 

reptiles 0.8 0.0 0.6 22.9 0.8 0.8 

amphibians 2.2 0.6 8.0 0.0 2.2 2.4 

butterflies and 

moths 

15.4 2.6 19.3 8.8 15.3 15.4 

hymenopterans 1.0 0.0 0.3 0.0 1.0 1.0 

dragonflies and 

damselflies 

27.6 22.3 54.4 3.0 27.7 26.0 

mantids 0.3 0.0 0.0 0.0 0.3 0.3 

locusts 2.1 0.1 9.7 0.0 2.1 2.2 

mollusks 0.2 0.0 0.0 4.8 0.2 0.2 

true bugs 0.3 0.0 0.0 0.0 0.3 0.3 

Figure 4.1.2 and Figure 4.1.3 examine the spatial distribution of valid candidate observation (that is, 

using only observations which passed the filter effects occurring in evaluation). All sets show the same 

general northwest to southeast trend of growing observation density. AF_SP candidate observations 

concenter in the high-observation-density areas in the southeast, while AF_SI3 observations are more 

dispersed than in the other sets, but are also predominantly found in the southeastern part of the area of 

interest, because valid candidate cases with a sufficient number of context species can only occur in 

areas with sufficient numbers of context observations. 

a) AF_A (n = 22,426) b) AF_SP (n = 1,486) 

 
Figure 4.1.2: Spatial distribution of valid candidate observations in sets of accepted and synthetic 
plausible ArtenFinder candidates, observed communities approach. (No. of points in 10x10 km raster. 
Classified by Natural Breaks. Source of Rheinland-Pfalz state line: LANIS Rheinland-Pfalz.) 
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a) AF_R (n = 362) 

 

b) AF_SI1 (n = 1,718) 

 
c) AF_SI2 (n = 22,197) 

 

d) AF_SI3 (n = 22,896) 

 
Figure 4.1.3: Spatial distribution of valid candidate observations in sets of rejected and synthetic im-
plausible ArtenFinder candidates, observed communities approach. (No. of points in 10x10 km raster. 
Classified by Natural Breaks. Source of Rheinland-Pfalz state line: LANIS Rheinland-Pfalz.) 

4.1.2 Evaluation Results, Observed Communities Approach, iNaturalist Data 

Similarity values 

Evaluation results for the observed communities approach with iNaturalist data are comparable, in all 

respects, to results obtained with ArtenFinder data. Figure 4.1.4 shows the distributions of Simpson 

similarity index values with iNaturalist data, and Table 4.1.6 presents numeric results of the statistical 

test used for assessing differences between distributions of similarity values of plausible or implausi-

ble observations. The data exhibit significant differences in distributions of similarity values between 

approved or synthetic plausible observations (iNat_A and iNat_SP) and the sets of synthetic implausi-

ble observations (iNat_SI1, iNat_SI2 and iNat_SI3). They allow for accepting the alternative hypothe-

sis (p ≤ 0.05) of the Mann-Whitney-U-Test for all comparisons of sets. According to this evaluation, 

distributions of Simpson index values of accepted and synthetic plausible candidate observations are 

statistically different from distributions of Simpson index values of synthetic implausible observations. 

The same is true for Jaccard index values, see Figure 4.1.4, and Table 4.1.7. Variances of the distribu-

tions which were compared were found to be not homogeneous by the Fligner-Killeen-Test (see sec-

tion 3.3.1 for details). 
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a) iNaturalist, Simpson index 

 

b) iNaturalist, Jaccard index 

 

 
Figure 4.1.4: iNaturalist, distributions of Simpson and Jaccard similarity index values, observed 
communities approach. n(iNat_A) = 34,821; n(iNat_SP) = 2,415; n(iNat_SI1) = 2,216; n(iNat_SI2) = 
34,485; n(iNat_SI3) = 4,768. 
 

Table 4.1.6: iNaturalist, results (p-Values) of Fligner-Killeen-Tests and of Mann-Whitney-U-Tests 
with iNat_A, iNat_SP and the three different sets of synthetic implausible candidate observations, 
Simpson index, observed communities approach. 
Simpson Index, iNat_A vs. iNat_SI1 iNat_SI2 iNat_SI3 

Fligner-Killeen-Test 0.0002067 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Simpson Index, iNat_SP vs. iNat_SI1 iNat_SI2 iNat_SI3 

Fligner-Killeen-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 
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Table 4.1.7: iNaturalist, results (p-Values) of Fligner-Killeen-Tests and of Mann-Whitney-U-Tests 
with iNat_A, iNat_SP and the three different sets of synthetic implausible candidate observations, 
Jaccard index, observed communities approach. 
Jaccard Index, iNat_A vs. iNat_SI1 iNat_SI2 iNat_SI3 

Fligner-Killeen-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Jaccard Index, iNat_SP vs. iNat_SI1 iNat_SI2 iNat_SI3 

Fligner-Killeen-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Properties of Observed communities 

iNaturalist data from California up to 2015 have 549 species with 100 or more research grade observa-

tions. Filtering for frequently associated species (with a threshold of 0.5) leaves 484 non-zero ob-

served communities and 234 observed communities with 10 or more species (ranging from 10 to 534 

species, mean: 86.9 species per observed community). A threshold of 0.5 for finding and eliminating 

nonspecific species results in no nonspecific species in the observed communities for this dataset. This 

means that no species is present in 50% or more of observed communities. Compared to the Arten-

Finder data, this points to higher species diversity in the observed communities, already visible in the 

much higher number of species represented in the data, and in the higher mean number of species in 

observed communities. This is certainly to be expected in a much larger and much more ecologically 

diverse area of interest. To keep the methodology comparable to the evaluation with ArtenFinder data, 

the threshold for nonspecific species was not changed to a lower value. Table 4.1.8 provides an over-

view of the numbers cited above. 

Table 4.1.8: iNaturalist, key numbers describing valid observed communities.  
No. of valid observed com-

munities 

Mean no. of species in ob-

served communities 

No. of nonspecific species 

 234  86.9  0 

41.0% of valid observed communities are of birds, followed by plants (29.5%) and mollusks (mostly 

marine mollusks, 14.5% of observed communities). The target species of the valid observed communi-

ties represent 41,576 of the accepted candidate observations (iNat_A), or roughly one fourth of these 

candidates.  

Properties of sets of candidate observations 

Some key parameters characterizing the sets of valid candidate observations resulting from the evalua-

tion with iNaturalist data are presented in Table 4.1.9. Source sets having different sizes (see section 

3.3.2), sets of valid candidates are also different in size. iNat_SP has, on average, the largest candidate 

contexts, as well as the largest observed communities associated to these cases. Also, its candidates are 

situated in locations with very high observation densities. iNat_SI1, iNat_SI2 and iNat_SI3 all have 

lower values for mean numbers of species in candidate contexts, and of context observations, if com-

pared to the average iNat_A case (iNat_SI3 extremely so). iNat_SI1 also has a lower number of spe-

cies in observed communities associated to its cases.  
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Table 4.1.9: iNaturalist, key numbers describing sets of valid candidate observations, observed com-
munities approach. 

Set of  

candidates 

No. of valid can-

didate cases 

Mean no. of spe-

cies in  

candidate contexts 

Mean no. of spe-

cies in observed 

communities, per 

set of candidates 

Mean no. of con-

text obs. 

iNat_A 34,821 132.3 65.2 753.1 

iNat_SP 2,415 316.9 260.1 3,957.5 

iNat_SI1 2,216 106.4 23.7 377.3 

iNat_SI2 34,485 127.6 65.5 487.9 

iNat_SI3 4,768 34.4 71.8 56.0 

Looking at species group compositions of the sets of valid candidate observations (that is, observa-

tions actually used in the evaluation, Table 4.1.10), iNat_A, iNat_SI2 and iNat_SI3 have again very 

similar species group compositions, which is due to the method used for creating iNat_SI2 and 

iNat_SI3. Selection of valid research-grade candidate observations in the process of evaluation 

brought a pronounced change to the thematic properties of iNat_A: they are now clearly dominated by 

bird observations, which make up about half of the valid candidate observations. Plants now rank only 

second, followed by mollusks, butterflies, and mammals. The class of “other species” (species not 

assignable to any of the groups used in these data) holds ca. 6-7% of valid candidates in this set and in 

iNat_SI2 and iNat_SI3. Reptiles, beetles and others make up the remaining candidates. Set iNat_SI1, 

containing only species selected for their special properties (physically similar species living in differ-

ent habitats) contains mostly birds as well as some plant species. iNat_SP is dominated by mollusks, 

followed by birds, plants and “other species”. 

Table 4.1.10: iNaturalist, portions of species groups in sets of valid candidate observations, observed 
communities approach. 
 iNat_A iNat_SP iNat_SI1 Nat_SI2 iNat_SI3 

Species group (%) (%) (%) (%) (%) 

plants 22.7 14.0 1.6 22.7 21.9 

mammals 2.0 1.9 0.0 2.0 2.1 

birds 51.3 31.7 98.4 51.3 48.9 

reptiles 0.8 1.1 0.0 0.7 0.6 

butterflies and 

moths 

2.7 0.0 0.0 2.7 3.1 

hymenopterans 0.1 0.0 0.0 0.1 0.1 

beetles 1.3 0.0 0.0 1.3 1.5 

dragonflies and 

damselflies 

0.8 0.0 0.0 0.8 0.8 

crustaceans 1.3 0.0 0.0 1.3 1.6 

mollusks 10.7 43.4 0.0 10.7 12.5 

other species 6.1 7.2 0.0 6.1 6.7 

spiders 0.2 0.0 0.0 0.2 0.3 
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a) iNat_A (n = 34,821) 

 

b) iNat_SP (n = 2,415) 

 
Figure 4.1.5: Spatial distribution of valid candidate observations in sets of research grade and syn-
thetic plausible iNaturalist candidates, observed communities approach. (No. of points in 20x20 km 
raster. Classified by Natural Breaks. Source of state line: U.S. Geological Survey 2016.) 

Figure 4.1.5 and Figure 4.1.6 show that the spatial distribution remains similar in all sets of valid can-

didate observations to the distribution in the original dataset. It can also be seen that valid research 

grade candidate observations in this experiment (set iNat_A) concentrate stronger in the San Francisco 

Bay area, than do the original research grade candidate observations from 2016. iNat_SP shows 

stronger concentration of observations to the high-observation-density areas, while iNat_SI3 observa-

tions are more dispersed than in the other sets. Both effects are caused by the method of production of 

these two synthetic sets (see section 3.3.2). In iNat_SP, candidates are located close to high-

plausibility observations from iNat_A, which are predominantly found in high-observation-density 

regions. On the contrary, placing iNat_SI3 candidates away from known observations of their target 

species pushes them away from existing clusters of observations. However, they still concentrate in 

regions with relatively high observation densities, because valid candidate cases need a sufficient 

number of context observations to produce valid candidate contexts with 10 or more species. 
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a) iNat_SI1 (n = 2,216) b) iNat_SI2 (n = 34,485) 

 
c) iNat_SI3 (n = 4,768) 

 
Figure 4.1.6: Spatial distribution of valid candidate observations in sets of synthetic implausible iNat-
uralist candidates, observed communities approach. (No. of points in 20x20 km raster. Classified by 
Natural Breaks. Source of state line: U.S. Geological Survey 2016.) 
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4.2 Evaluation of the OSM Environments Approach 

Evaluation of the OSM environments approach followed as closely as possible the procedure chosen 

for evaluation of the observed communities approach, whose results were described in detail in section 

4.1. This was done to attain a maximum of comparability between the results obtained here and those 

obtained with the observed communities approach. Also, the basic premises for the OSM environ-

ments approach to work as a plausibility estimator for casual citizen science observations of organisms 

are analogous: it is a promising approach in this sense if and when plausible observations show a 

higher similarity of OSM tags mapped around them to the proper species’ OSM environment than do 

implausible observations.  

The same sets of plausible and implausible observations for both data use cases were used (for an 

overview, see Table 3.3.1). Although mostly the same parameter settings (frequency thresholds etc.) 

were used, the differing nature and structure of the data about geographic context (here: OSM data) 

led to, in part, different candidate observations passing the analysis process as valid candidates. E.g., 

only 35.9% of valid AF_A candidate cases in evaluation of the observed communities approach 

(which had 22,426 valid AF_A cases) are also valid AF_A candidate cases in OSM environments 

approach evaluation. The latter produces, from the same stock of accepted ArtenFinder observations 

of the year 2016, just 15,329 valid AF_A candidate cases, with 8,046 of them matching the former 

evaluation result. Results of OSM environments approach evaluation are presented in the same way as 

before, using the same types of charts. Results are tested with the same statistical methods, because the 

relevant conditions (especially concerning the statistical properties of distributions of similarity val-

ues) persist. Evaluation was thus conducted along the lines described in sections 3.2 and 3.3 with Ar-

tenFinder and iNaturalist data, with the same similarity indices as in the observed communities ap-

proach, and with mostly analogous parameter settings: 

 Extraction of OSM environments: 

o Uniform search radius of 1,000 m for relevant neighborhood for all species groups, 

o target species: only species with 10 or more approved observations up to 2015 (a low-

er threshold is here employed than in evaluation of the observed communities ap-

proach, because it was shown in sensitivity analysis that this can be done without 

changing similarity distribution results to a large extent, but allows for including more 

target species and candidate observations in the analysis, see section 4.3.1), 

o frequency threshold for tags frequently mapped in proximity to the target species: 0.5, 

o frequency threshold for nonspecific tags (tags which are part of many OSM environ-

ments at the same time, and therefore removed from the final OSM environments): 

0.5. 

 Extraction of candidate context: 

o Uniform search radius of 1,000 m for relevant neighborhood for all species groups, 

o tags which are part of 50% or more of OSM environments removed from candidate 

tag contexts. 

 Comparison of similarity values: 

o Candidate cases restricted to cases where the size of both the OSM environment and 

of the candidate tag context is 10 or larger, 

o candidate observations of nonspecific species (identified with the observed communi-

ties approach) not used in analysis. 

As before, properties of OSM environments and of sets of valid candidate observations are described 

as part of evaluation results, because they are important in interpretation of evaluation results. 
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4.2.1 Evaluation Results, OSM Environments Approach, ArtenFinder Data 

Similarity Values 

Evaluation of the OSM environments approach yields results which are basically comparable to those 

obtained with observed communities. Accepted and synthetic plausible candidate observations mostly 

have higher index values with their OSM environments, than have rejected or synthetic implausible 

observations. However, the difference between distributions of similarity values of plausible and im-

plausible observations is smaller, because especially the sets of synthetic implausible observations 

have overall higher similarity values than with the former approach. Figure 4.2.1 shows the distribu-

tions of Simpson and Jaccard similarity index values for ArtenFinder data resulting from evaluation. 

AF_SI2 and AF_SI3 are closer to the other distributions, than they were with the observed communi-

ties approach. Statistical tests with the Mann-Whitney-U-Test showed, however, that they are still 

statistically different from AF_A and AF_SP (see Table 4.2.1 and Table 4.2.2).  

a) ArtenFinder, Simpson index 

 

b) ArtenFinder, Jaccard index 

 

 
Figure 4.2.1: ArtenFinder, distributions of Simpson and Jaccard similarity index values, OSM envi-
ronments approach. n(AF_A) = 15,329; n(AF_SP) = 1,568; n(AF_R) = 215; n(AF_SI1 = 2,104; 
n(AF_SI2) = 14,964; n(AF_SI3) = 15,618. 
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Table 4.2.1: ArtenFinder, results (p-Values) of Fligner-Killeen-Tests and of Mann-Whitney-U-Tests 
with AF_A, AF_SP and the four different sets of rejected or synthetic implausible candidate observa-
tions, Simpson index, OSM environments approach. 
Simpson Index, AF_A vs. AF_R AF_SI1 AF_SI2 AF_SI3 

Fligner-Killeen-Test 0.8047 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test 9.577*10-9 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Simpson Index, AF_SP vs. AF_R AF_SI1 AF_SI2 AF_SI3 

Fligner-Killeen-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

 
Table 4.2.2: ArtenFinder, results (p-Values) of Fligner-Killeen-Tests and of Mann-Whitney-U-Tests 
with AF_A, AF_SP and the four different sets of rejected or synthetic implausible candidate observa-
tions, Jaccard index, OSM environments approach. 
Jaccard Index, AF_A vs. AF_R AF_SI1 AF_SI2 AF_SI3 

Fligner-Killeen-Test 0.05772 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test 9.886*10-11 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Jaccard Index, AF_SP vs. AF_R AF_SI1 AF_SI2 AF_SI3 

Fligner-Killeen-Test 2.505*10-5 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Properties of OSM Environments 

ArtenFinder observations up to 2015 are of 2,957 different species. Of these, 1061 species have 10 or 

more accepted observations. Extracting the OSM tags which surround these observations, reducing 

them to frequently associated tags and filtering out the nonspecific tags produces 415 OSM environ-

ments with 10 or more tags. There are 25 nonspecific tags which are associated to 50% or more of the 

target species (see Table 5.2.6, in the discussion chapter). 39 nonspecific species (resulting from the 

observed communities sensitivity analysis with analogous parameter settings, see section 4.3.1) were 

not used for evaluation purposes. 26 of these species have OSM environments with less than 10 tags 

anyway, so that 402 valid OSM environments remain for use in evaluation. Sizes of these OSM envi-

ronments range from 10 to 105 tags (mean: 19.5). See Table 4.2.3 for an overview of these numbers 

for ArtenFinder data. Using a much lower number of min. 10 target species for OSM environment 

extraction (vs. min. 100 observations necessary for observed communities extraction in the evaluation 

of that approach) led to a higher number of valid OSM environments when compared to the number of 

valid observed communities. Valid OSM environments belong to 18 species groups. Most belong to 

plants (37.8%), followed by birds (16.7%) and the group of butterflies and moths (14.9%).  

Table 4.2.3: ArtenFinder, key numbers describing valid OSM environments. 
No. of valid OSM envi-

ronments 

Mean no. of tags in 

OSM environments 

No. of nonspecific 

tags 

No. of nonspecific 

species 

 402  19.5 25  39 

Properties of Sets of Valid Candidate Observations 

Table 4.2.4 lists some key parameters describing the sets of valid candidate observations resulting 

from evaluation with ArtenFinder and OSM data. Sets of valid candidates are different in size. Mean 

numbers of tags in candidate contexts and mean numbers of tags in OSM environments associated to 

these cases also differ between sets. AF_SI3 deviates strongly in mean size of its candidate contexts, 

and in mean no. of tags (incl. nonspecific tags) around candidates, which are both much lower due to 

the method of creation of this set (see section 3.3.2). Compared to AF_A, AF_R has smaller and 
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AF_SP larger OSM environments associated to its candidates. Numbers of valid candidate cases are 

lower in all sets, than they were in observed communities approach evaluation. This is the case alt-

hough the number of valid OSM environments (and thus the number of evaluated target species) is 

higher (see above). However, less candidate cases were evaluated as valid because many are situated 

in locations with too few tags (< 10) within the relevant neighborhood.  

Table 4.2.4: ArtenFinder, key numbers describing sets of valid candidate observations, OSM environ-
ments approach. 

Set of  

candidates 

No. of valid can-

didate cases 

Mean no. of tags 

in  

candidate contexts 

Mean no. of tags 

in OSM environ-

ments, per set of 

candidates 

Mean no. of con-

text tags (incl. 

nonspecific tags) 

AF_A 15,329 35.6 19.1 56.3 

AF_SP 1,568 39.8 31.6 61.9 

AF_R 215 32.8 16.2 52.9 

AF_SI1 2,104 33.2 19.8 53.6 

AF_SI2 14,964 34.0 19.1 54.3 

AF_SI3 15,618 23.2 19.1 41.0 

 
Table 4.2.5: ArtenFinder, portions of species groups in sets of candidate observations used in evalua-
tion, OSM environments approach. 

 AF_A AF_SP AF_R AF_SI1 AF_SI2 AF_SI3 

Species group (%) (%) (%) (%) (%) (%) 

plants 5.7 1.1 2.4 0.0 5.6 6.0 

fungi 1.4 0.6 0.0 0.0 1.3 1.4 

mammals 1.9 2.0 0.5 0.0 1.9 2.0 

birds 65.9 78.9 12.1 90.4 66.3 65.3 

reptiles 3.3 1.0 2.8 3.9 3.3 3.3 

amphibians 0.4 0.2 0.9 0.0 0.4 0.4 

butterflies and 

moths 

6.6 6.0 28.8 1.3 6.5 6.7 

hymenopterans 1.8 0.8 2.3 0.0 1.7 1.8 

beetles 0.7 0.4 0.9 0.0 0.7 0.7 

dragonflies and 

damselflies 

9.7 8.1 43.3 0.7 9.6 9.8 

mantids 0.4 0.1 0.0 0.0 0.4 0.4 

locusts 1.2 0.3 3.7 0.0 1.2 1.1 

crustaceans 0.0 0.0 0.0 0.0 0.0 0.1 

mollusks 0.5 0.1 0.5 3.8 0.5 0.5 

true bugs 0.4 0.4 0.0 0.0 0.4 0.4 

neuropterans 0.0 0.0 1.9 0.0 0.0 0.0 
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Species group compositions of the sets of valid candidate observations are shown in Table 4.2.5. Spe-

cies group compositions of AF_SI2 and AF_SI3 are, expectedly, almost identical to AF_A, (AF_SI2 

and AF_SI3 were created based on AF_A observations, see section 3.3.2). AF_SI1 and AF_SP have 

higher portions of birds. These findings go along with effects found also in observed communities 

approach evaluation. However, dominance of bird observations in most sets is now much stronger than 

in observed communities approach evaluation. The slightly higher portion of plants in candidates is an 

effect introduced by using a lower threshold of 10 or more (instead of 100 or more) observations of a 

target species available in approved observations up to 2015 for OSM environment generation. This 

also causes the number of species groups to be higher than in observed communities approach evalua-

tion (16 vs. 13). 

a) AF_A (n = 15,329) 

 

b) AF_SP (n = 1,568) 

 
Figure 4.2.2: Spatial distribution of valid candidate observations in sets of accepted and synthetic 
plausible ArtenFinder candidates, OSM environments approach. (No. of points in 10x10 km raster. 
Classified by Natural Breaks. Source of Rheinland-Pfalz state line: LANIS Rheinland-Pfalz.) 

In the sets AF_A, AF_R and AF_SI1, the general northwest to southeast trend of growing observation 

density was not changed by the selection of valid candidate observations in evaluation, because these 

depend strongly on the overall distribution of ArtenFinder observation density in Rheinland-Pfalz, see 

Figure 4.2.2 and Figure 4.2.3. This is also true for the set AF_SP, which is based on synthetic, spatial-

ly random observations. AF_SP observations are located close to plausible AF_A observations which 

have their highest densities in southeastern Rheinland-Pfalz. However, the sets AF_SI2 and AF_SI3, 

which are also based on synthetic random points, almost invert the northwest to southeast trend of 

observation density, because they represent observations away from known occurrences of the species 

they represent. Even AF_SI2, which has synthetic observations in situations with similar OSM tag 

density as AF_A observations, shows this effect, because OSM tag density does not have a northwest 

to southeast trend. This finding confirms that OSM data in Rheinland-Pfalz are indeed capable of 

providing sufficient numbers of context tags for plausibility estimation in regions where observation 

density is insufficient for this purpose. With the observed communities approach, the northern and 

northwestern parts of Rheinland-Pfalz were practically devoid of valid candidate observations. This 

was not only the case for real observations (scarce in these regions anyway), but also for synthetic 

candidate observations based on random points, which did not find adequate context observation den-

sities to provide valid numbers of context species in these regions. 
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a) AF_R (n = 215) b) AF_SI1 (n = 2,104) 

 
c) AF_SI2 (n = 14,964) d) AF_SI3 (n = 15,618) 

 
Figure 4.2.3: Spatial distribution of valid candidate observations in sets of rejected and synthetic im-
plausible ArtenFinder candidates, OSM environments approach. (No. of points in 10x10 km raster. 
Classified by Natural Breaks. Source of Rheinland-Pfalz state line: LANIS Rheinland-Pfalz.) 

4.2.2 Evaluation Results, OSM Environments Approach, iNaturalist Data 

Similarity Values 

Above, we found evaluation results of the OSM environments approach with ArtenFinder data to be 

comparable to results obtained with the observed communities approach. The same commonalities, but 

also differences, are evident in evaluation results with iNaturalist data. Figure 4.2.4 shows the distribu-

tions of Simpson similarity index values for iNaturalist data resulting from OSM environments ap-

proach evaluation. iNaturalist research grade candidate observations (iNat_A) and synthetic plausible 

candidates (iNat_SP) usually have higher Simpson index values with their observed communities, than 

have synthetic implausible observations. Again, distributions of similarity values of _SI2 and _SI3 sets 

are higher than they were with the observed communities approach, and therefore closer to the other 

distributions, while remaining statistically different from iNat_A and iNat_SP (see Table 4.2.6. and 

Table 4.2.7). 
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a) iNaturalist, Simpson index 

 

b) iNaturalist, Jaccard index 

 

  
Figure 4.2.4: iNaturalist, distributions of Simpson and Jaccard similarity index values, OSM environ-
ments approach. n(iNat_A) = 35,058; n(iNat_SP) = 2,131; n(iNat_SI1) = 290; n(iNat_SI2) = 34,654; 
n(iNat_SI3) = 4,542. 
 
Table 4.2.6: iNaturalist, results (p-Values) of Fligner-Killeen-Tests and of Mann-Whitney-U-Tests 
with iNat_A, iNat_SP and the three different sets of synthetic implausible candidate observations, 
Simpson index, OSM environments approach. 
Simpson Index, iNat_A vs. iNat_SI1 iNat_SI2 iNat_SI3 

Fligner-Killeen-Test 0.004178 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Simpson Index, iNat_SP vs. iNat_SI1 iNat_SI2 iNat_SI3 

Fligner-Killeen-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 
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Table 4.2.7: iNaturalist, results (p-Values) of Fligner-Killeen-Tests and of Mann-Whitney-U-Tests 
with iNat_A, iNat_SP and the three different sets of synthetic implausible candidate observations, 
Jaccard index, OSM environments approach. 
Jaccard Index, iNat_A vs. iNat_SI1 iNat_SI2 iNat_SI3 

Fligner-Killeen-Test 7.115*10-7 < 2.2*10-16 1.19*10-14 

Mann-Whitney-U-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Jaccard Index, iNat_SP vs. iNat_SI1 iNat_SI2 iNat_SI3 

Fligner-Killeen-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Mann-Whitney-U-Test < 2.2*10-16 < 2.2*10-16 < 2.2*10-16 

Properties of OSM Environments 

There are 2,641 (of 8,125) species with 10 or more research grade observations in the California iNat-

uralist data up to 2015. Filtering for frequently associated tags (with a threshold of 0.5) produces 1,476 

OSM environments with 10 or more tags. A threshold of 0.5 for finding and eliminating nonspecific 

tags results in nine nonspecific tags in the OSM environments for this dataset. This means that nine 

tags are present in 50% or more of OSM environments. After removing these from the OSM environ-

ments, 635 valid OSM environments remain for evaluation purposes, their size ranging from 10 to 89 

tags, with a mean size of 20.1 tags (Table 4.2.8). Again, the number of valid OSM environments is 

higher than the number of valid observed communities in the evaluation of that approach, because a 

lower threshold of min. 10 target species observations was employed in OSM environment extraction. 

Valid OSM environments are of 21 species groups, plants dominating at 26.5%, followed by mollusks 

(20.8%) and birds (16.1%).  

Table 4.2.8: iNaturalist, key numbers describing valid OSM environments. 
No. of valid OSM en-

vironments 

Mean no. of tags in 

OSM environments 

No. of nonspecific 

tags 

No. of nonspecific 

species 

 635  20.1 9  0 

Properties of Sets of Valid Candidate Observations 

Some key parameters describing the sets of valid candidate observations resulting from evaluation of 

the OSM environments approach with iNaturalist data are listed in Table 4.2.9. iNat_SP has the largest 

OSM contexts associated to its candidates, on average. iNat_SI3 cases are situated in locations with 

lower tag densities than the other sets. Numbers of valid candidate cases are partly comparable to 

numbers obtained in observed communities approach evaluation. However, considering the higher 

number of target species evaluated (see above), they are relatively low. 
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Table 4.2.9: iNaturalist, key numbers describing sets of valid candidate observations, OSM environ-
ments approach. 

Set of  

candidates 

No. of valid can-

didate cases 

Mean no. of tags 

in  

candidate contexts 

Mean no. of tags 

in OSM environ-

ments, per set of 

candidates 

Mean no. of con-

text tags (incl. 

nonspecific tags) 

iNat_A 35,058 33.6 16.2 40.8 

iNat_SP 2,131 29.9 19.6 36.8 

iNat_SI1 290 28.9 16.8 36.2 

iNat_SI2 34,654 32.5 16.2 39.2 

iNat_SI3 4,542 18.5 16.1 23.5 

 
Table 4.2.10: iNaturalist, portions of species groups in sets of valid candidate observations used in 
OSM environments evaluation, OSM environments approach. 
 iNat_A iNat_SP iNat_SI1 Nat_SI2 iNat_SI3 

Species group (%) (%) (%) (%) (%) 

plants 11.6 12.6 7.6 11.7 12.2 

fungi 3.6 2.7 0.0 3.6 3.5 

mammals 3.0 7.0 0.0 3.0 2.8 

birds 40.7 11.2 92.4 40.7 40.2 

reptiles 1.3 4.3 0.0 1.3 0.9 

amphibians 0.1 0.0 0.0 0.1 0.2 

modern bony fish-

es 

0.5 0.5 0.0 0.5 0.6 

butterflies and 

moths 

6.7 5.0 0.0 6.7 6.3 

hymenopterans 4.0 1.2 0.0 4.0 3.8 

beetles 2.6 2.3 0.0 2.7 2.7 

dragonflies and 

damselflies 

0.1 0.0 0.0 0.2 0.2 

earwigs 0.5 0.0 0.0 0.5 0.3 

mantids 0.1 0.0 0.0 0.1 0.1 

cockroaches 0.2 0.0 0.0 0.2 0.2 

locusts 0.7 0.5 0.0 0.7 0.8 

crustaceans 1.8 1.5 0.0 1.8 1.6 

mollusks 16.9 42.0 0.0 16.9 17.8 

other species 2.4 5.9 0.0 2.4 2.6 

true bugs 0.9 0.4 0.0 0.9 1.3 

flies 0.3 0.4 0.0 0.4 0.3 

spiders 1.7 2.6 0.0 1.7 1.8 

Table 4.2.10 summarizes the species group compositions of the sets of valid candidate observations. 

iNat_A, iNat_SI2 and iNat_SI3 have very similar species group composition, which is due to the 

method used for creating iNat_SI2 and iNat_SI3. All sets except iNat_SP are clearly dominated by 

bird observations. Mollusks rank second in iNat_A, iNat_SI2 and iNat_SI3, and dominate iNat_SP. 

Plants are also prominent, mostly with portions above 10%. Set iNat_SI1, containing only species 

selected for their special properties (physically similar species living in different habitats) contains 

mostly birds as well as some plant species. 
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Figure 4.2.5 and Figure 4.2.6 show the spatial distribution in all sets of valid candidate observations. 

iNat_SP shows stronger concentration of observations to the high-observation-density areas, while 

iNat_SI2 and iNat_SI3 observations are more dispersed than in the other sets. iNat_SI2 and _SI3 also 

show higher densities in regions which had only few valid candidates in observed communities ap-

proach evaluation. However, this effect is not as pronounced as in the ArtenFinder data use case, be-

cause the spatial properties of California OSM data are more similar to iNaturalist observation distri-

bution, than Rheinland-Pfalz OSM data are to ArtenFinder observations. Still, with OSM data as con-

text source, iNat_SI2 and iNat_SI3 valid candidate observations can be found in considerable densities 

also in greater distances to the Los Angeles and San Francisco bay areas, as well as in the central val-

ley and other places which did not produce many valid candidate cases with observed communities. 

Large regions in southern, eastern, and northern California remain, however, low-density regions due 

to a lack of adequate OSM data. 

a) iNat_A (n = 35,058) b) iNat_SP (n = 2,131) 

 
Figure 4.2.5: Spatial distribution of valid candidate observations in sets of research grade and syn-
thetic plausible iNaturalist candidates, OSM environments approach. (No. of points in 20x20 km ras-
ter. Classified by Natural Breaks. Source of state line: U.S. Geological Survey 2016.) 
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a) iNat_SI1 (n = 290) 

 

b) iNat_SI2 (n = 34,654) 

 
c) iNat_SI3 (n = 4,542) 

  
Figure 4.2.6: Spatial distribution of valid candidate observations in sets of synthetic implausible iNat-
uralist candidates, OSM environments approach. (No. of points in 20x20 km raster. Classified by Nat-
ural Breaks. Source of state line: U.S. Geological Survey 2016.) 
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4.3 Results of Sensitivity Analysis 

When input parameters are changed or methods are modified, evaluation results also change. Section 

3.4 presented a series of such changes to input parameters and of methodological modifications which 

were applied mainly to the observed communities approach, but included also one specific modifica-

tion to the OSM environments approach. Below, effects of each parameter change or methodological 

modification are described. They reveal complex interactions between output parameters such as ob-

served community size or number of nonspecific species. For instance, an input parameter change may 

lead to larger observed communities, which in turn produces higher numbers of valid observed com-

munities, because fewer of them fall below the minimum requirement of size. At the same time, larger 

observed communities may also yield more nonspecific species, so that more observed communities 

are discarded as belonging to a nonspecific species. Some factors affect the number of valid candidate 

observations, and thus also the methods’ effectiveness. For instance, while more observed communi-

ties allow for more candidates to be evaluated, more nonspecific species also disqualify more candi-

date observations at the same time. Ultimately, all such effects combine in a complex way to cause 

changes in the numbers of valid observed communities, in numbers of candidate observations evaluat-

ed, and in distributions of similarity values of the candidate observation sets. However, the principle 

behavior of the observed communities approach was found to remain basically the same in all cases. 

Stronger effects are mostly restricted to numbers of target species and candidate observations which 

are actually evaluated, while distributions of similarity values do show upward or downward shifts, 

but mostly keep their principle relations between each other.  

4.3.1 Results of Using a Lower Minimum Requirement for Target Species Ob-
servations 

Here, the effects of a substantially lower threshold of min. 10 target species observations in observed 

community extraction were examined. Detailed numeric and graphic results can be found in the ap-

pendix, section 7.3.1. While the result with this input parameter modification has all valid target spe-

cies which were part of the evaluation of the approach laid out above, the modification added a large 

number of target species with less than 100 observations up to 2015, for which valid observed com-

munities were now available. In ArtenFinder data, the number of target species with valid observed 

communities more than quadrupled to 792 species. iNaturalist now had even more than five times the 

number of valid observed communities, at 1258. This also led to a substantial raise in valid candidate 

observation numbers, that is, in the numbers of candidate cases which could be actually evaluated with 

the approach. ArtenFinder sets now had, on average, 67% more valid candidate cases, and 50.1% of 

all AF_A candidates were actually valid cases (was 32.7%). iNaturalist sets grew by 49% on average, 

and 30.0% of iNat_A candidate cases were now actually used (was 20.8%). However, this also in-

duced changes to other properties of the resulting observed communities and candidate sets for both 

data use cases. Interestingly, a much larger portion of 30.4% of ArtenFinder observed communities 

now belonged to plants, while birds, which where dominant before, now made up only 16.4% of them. 

However, this had only a mild effect on the species composition of valid ArtenFinder candidate sets. 

The same was true for iNaturalist data, where plants species now contributed 42.8% of valid observed 

communities, leading also to a raise but not dominance of plants in valid candidate cases.  

Distributions of Simpson index values for ArtenFinder data differed only slightly from those obtained 

with the more restrictive requirement of target species observation numbers for observed communities 

extraction. With Jaccard similarity values, medians of all sets of implausible observations slightly 

rose, while the median for accepted observations remained constant. The AF_R distribution, close to 

AF_A already in evaluation, came close to being no longer significantly different from Jaccard index 
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values for AF_A. iNaturalist index distributions also showed only very slight changes, and differences 

between them remained significant.  

4.3.2 Results of Using Variable Search Radii 

This sensitivity analysis introduced the use of different search radii for different species groups. Con-

trast between distributions of Simpson similarity values of plausible and implausible observations was 

not increased by this parameter change for most ArtenFinder sets. Detailed numeric and graphic re-

sults can be found in the appendix, section 7.3.2. While the medians of AF_A and AF_SP rose slight-

ly, the medians of the synthetic sets of implausible observations also rose. Only the similarity values 

of the set AF_R dropped. The changes in distributions of Jaccard index values showed similar behav-

ior. Differences remained, however, significant. In the iNaturalist case, relations of the distributions of 

Simpson index values, considering their medians, showed slightly smaller differences than before: 

while iNat_A and iNat_SP dropped slightly, all sets of implausible candidates went up. For distribu-

tions of Jaccard index values, one unusual effect was that the iNat_SI1 median was now even placed 

above the median of iNat_A. 

Results with different search radii for different species groups once more revealed the complex me-

chanics taking effect when observed community approach parameters are changed. While numbers of 

valid observed communities dropped by 69.9% to 128 for ArtenFinder data, this number rose by 

37.6% to 322 for iNaturalist data. With ArtenFinder data, this difference was caused by a strong in-

crease in nonspecific species from 46 to 118, which over-compensated for the rise in valid candidate 

cases through larger search radii. iNaturalist now had five nonspecific species, but the positive effect 

of larger search radii on valid candidate case numbers was far stronger. Mean sizes of observed com-

munities and candidate contexts increased, as was to be expected with larger search radii.  

4.3.3 Results of Shifting Frequency Thresholds for Frequent Co-Observations 
and Nonspecific Species 

Threshold for frequent co-observations 

This analysis examined effects of higher or lower frequency thresholds for frequent co-observations in 

observed communities. See appendix, section 7.3.3.1 for graphical and numerical details. In the Ar-

tenFinder use case, a shift towards a higher threshold value for relevant co-observations led to higher 

Simpson index values in all sets, while a lower threshold reduced index values. The Jaccard index’s 

behavior for a lower threshold was more mixed, while a higher threshold reduced Jaccard index val-

ues. Differences between distributions of index values of sets of plausible and implausible observa-

tions were slightly smaller with both indices and a higher threshold, and partly larger for a reduced 

threshold. They remained significant. Similarity index distributions of iNaturalist data showed trends 

which are in part similar to results obtained with ArtenFinder data, and in part different. Raising the 

threshold to 0.75 led to higher similarities in sets of plausible, but lower ones in sets of implausible 

observations. With the lower threshold value of 0.25, which had varied effects with iNaturalist data, 

the distribution of iNat_SI1 Jaccard index values was no longer significantly different from iNat_A.  

Through the complex interplay of the threshold values which were examined here with numbers of 

valid observed communities and numbers of nonspecific species, the ArtenFinder data use case had 

lower numbers of valid observed communities and of valid candidate cases (with smaller candidate 

contexts) for a lower threshold value of 0.25. Raising the threshold to 0.75 also led to fewer valid ob-

served communities, but higher numbers of valid candidate observations. iNaturalist data reacted to 
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the contrary, the lower threshold resulting in a higher effectiveness in terms of valid observed commu-

nities and candidate cases, and the higher threshold (in the absence of nonspecific species) strongly 

reducing both numbers.  

Threshold for identifying nonspecific species 

How did choosing a lower or higher threshold for nonspecific species affect the results? To appraise 

these effects, experiments were conducted which used either a threshold of 0.25 or of 0.75 for identi-

fying nonspecific species in the process of observed communities creation. See appendix, section 

7.3.3.2, for detailed results. Results with the higher value (0.75) for iNaturalist data were identical to 

evaluation results obtained before, because the number of nonspecific species remained 0. Lowering 

the threshold led to higher numbers of nonspecific species in both data use cases, and consequently to 

lower numbers of valid observed communities, and of valid candidate observations. With ArtenFinder 

data, the lower threshold value resulted in a raise of 61% to 78 nonspecific species, and the iNaturalist 

case now produced 8 nonspecific species. The higher threshold value reduced ArtenFinder nonspecific 

species to 28, a drop of 38%. 

Despite the notable changes in numbers of nonspecific species, changing the threshold for identifying 

nonspecific species to 0.25 or to 0.75 did not change the behavior of the observed communities ap-

proach in terms of distributions of similarity values in a critical way, although differences between 

distributions of similarity values of plausible and implausible sets were somewhat larger for the lower 

threshold value for both data use cases, and slightly smaller for ArtenFinder data with the higher 

threshold value (especially with the Simpson index). iNaturalist results showed only very small chang-

es with the threshold variations applied here.  

4.3.4 Results of Using Auxiliary Land Cover and Ecological Land Unit Infor-
mation 

Detailed numeric and graphic results for this change in methodology are presented in the appendix, 

section 7.3.4. When CORINE land cover or ELU polygon geometries are used with ArtenFinder data 

to restrict relevant search areas, differences between AF_SP and AF_SI2 / AF_SI3 increase. iNatural-

ist results with NLCD and ELU data also mostly exhibit larger differences between iNat_SP and 

iNat_SI1, _SI2 and _SI3 sets, except for the ELU / Jaccard index case.  

Using auxiliary land cover or ELU information did not much change the overall effectiveness of the 

approach in the ArtenFinder use case, although effects are different for different sets of candidate ob-

servations. Numbers of nonspecific species were markedly lower, compensating for a larger number of 

candidate cases with too small species contexts. The iNaturalist data use case, however, experienced a 

strong reduction in numbers of valid observed communities and valid candidate cases, because of the 

absence of nonspecific species. In the experiment with ELU data, this is also partly due to the fact that 

ELUs only have terrestrial units, so that all marine organisms dropped out in this analysis. 

4.3.5 Results of Using a Quantitative Similarity Index 

The Similarity Ratio is closely related to the Jaccard index (see section 3.1), and similarity distribu-

tions obtained with it were therefore compared to evaluation results with the Jaccard index. For de-

tailed results in tables and graphs, see appendix, section 7.3.5. As usual, all other parameter settings of 

the method were kept constant with the values used in evaluation. The only change here consists in the 

use of a different similarity coefficient. All results which concern properties of observed communities 
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or candidate observation sets, such as their numbers and sizes, were therefore identical (or, in the case 

of _SP sets, mostly close) to the results obtained in evaluation, and do not need to be reiterated.  

Weighting species in observed communities and in candidate contexts by observation frequency in-

creased differences between AF_A/AF_SP and all ArtenFinder sets of implausible observations, when 

compared to results obtained with the binary Jaccard index, which only uses information about the 

presence or absence of species in observed communities and candidate contexts. Distance weighting, 

on the contrary, rather decreased differences between similarity value distributions of plausible and 

implausible observation sets, mostly because AF_SP similarities decreased. In iNaturalist results with 

frequency weighting of species, all distributions of similarity shifted towards lower values. With 

weighting of species by distance of observations, iNat_A remained almost constant, while distribu-

tions of iNat_SP, iNat_SI1, iNat_SI2 and iNat_SI3 shifted towards lower values, reducing the differ-

ences in the process. 

4.3.6 Edge Effects 

In an appropriate analysis, the impact of edge effects in evaluation results was tested using a guard 

zone approach (see section 3.4.6 for methodological details). 8.2% of accepted ArtenFinder Observa-

tions up to 2015, and 12.2% of accepted ArtenFinder observations from 2016 were situated in the 

guard zone. In both data subsets, these were mostly found in the southeastern part of the area of inter-

est, where observation density is highest. In iNaturalist data, these portions were much lower: only 

0.4% of research grade observations up to 2015, and 0.2% of research grade observations from 2016 

were situated within the one-km zone at the edge of the area of interest, showing that observation den-

sity is much lower here along the edge of the area of interest, than in Rheinland-Pfalz data. This led to 

lower numbers of valid observed communities and candidate observations, especially in the Arten-

Finder case. The appendix, section 7.3.6, gives details of these changes. However, results with edge 

effect correction were very similar, in all respects, to those obtained without edge effect correction. 

4.3.7 Results with a Variant of Simpson Index 

In evaluation, the observed community was smaller than the candidate context in 71.5% of all candi-

date cases in ArtenFinder sets, and in 79.7% of all candidate cases in iNaturalist sets. Therefore, the 

Simpson index was, in the majority of cases, equal to the variant of the Simpson index suggested in 

section 3.4.7, and the behavior of this variant was therefore very close to the Simpson index in all re-

spects, because most Simpson index values were calculated with the observed community size as de-

nominator anyway. Detailed results can be found in the appendix, section 7.3.7.  

4.3.8 Results of Using Date-Specific OSM Context 

Results with extraction of OSM context timed to the observation date (see appendix, section 7.3.8 for 

detailed results) show that earlier OSM stages provide fewer tags for analysis. This was to be ex-

pected, as examination of the OSM data used in this work showed a steady growth of tag numbers 

over time for most keys (see section 2.1.3). Therefore, when using earlier stages of OSM which corre-

spond with observation dates, OSM environments and candidate contexts become smaller, on average. 

This effect also reduced the numbers of valid OSM environments and of valid candidate cases: fewer 

species, and fewer candidates, can be actually evaluated. The ArtenFinder use case lost 32% of its 

valid OSM environments and 31% of its valid AF_A candidate cases. In iNaturalist data, this effect 

was less pronounced, with just 5% of valid OSM environments and 18% of valid iNat_A candidates 

lost. 
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There were no substantial shifts in distributions of similarity values which would argue for a positive 

effect on results in terms of contrast between sets of predominantly plausible or implausible candidate 

observations. AF_A and iNat_A Simpson index value distributions shifted upwards, but so did _SI2 

and _SI3 distributions. Jaccard index AF_SP and iNat_SP distributions shifted slightly downwards, 

while _SI2 and _SI3 distributions remained more or less constant.  

 

 





 

5 Discussion 

5.1 Observed Communities Approach 

In both data use cases, both similarity coefficients produce distributions of values for plausible obser-

vations which are statistically different from the distributions for implausible observations. In all cas-

es, the candidate contexts of plausible observations show significantly higher similarities to their ob-

served communities, than do those of implausible candidate observations. Evaluation therefore was 

able to show that the observed communities approach is able to distinguish between sets of plausible 

and implausible observations.  

Observed communities are the basis of the approach which was evaluated here. Discussion of evalua-

tion results therefore starts with some important properties they show, and then proceeds to differences 

between the sets of candidates tested in evaluation, and the causes for these differences. Influence of 

the spatial properties of the data, especially of variable observation density, on similarity values is also 

discussed in detail, as well as the relations between Simpson and Jaccard index values and their corre-

lation. Finally, effects of parameter changes and methodological modifications on evaluation results 

are discussed. 

5.1.1 Similarity of Observed Communities 

The observed communities approach can work only if different species have, in principle, observed 

communities which are different from one another. The similarity indices used for estimating plausi-

bility of candidate observations can of course also be used to examine differences between observed 

communities, by calculating the Simpson and Jaccard index values for each observed community with 

all others. Figure 5.1.1 shows that Simpson und Jaccard similarity values between observed communi-

ties are low, for both data use cases. Medians of 0.36 for ArtenFinder Simpson index and 0.13 for 

ArtenFinder Jaccard index are close to the values which were found for synthetic implausible observa-

tion sets in the evaluation presented above. The same is true, to a lesser degree, for iNaturalist values.  

a) ArtenFinder, n = 23,220 

 

b) iNaturalist, n = 27,261 

 
Figure 5.1.1: ArtenFinder and iNaturalist, distributions of Simpson and Jaccard index values, similar-
ities of observed communities with >= 10 species among one another. 
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This may not come as a surprise, because observed communities come from very different species and 

species groups. Looking at these results in more detail, it is soon discovered that there are of course 

also species which have quite similar observed communities. Basically, two observed communities 

will be similar if the two target species are predominantly observed in places with similar contexts. 

This is likely if, for instance, the two target species share the same habitat preferences. This effect can 

be traced when looking at different species groups: groups of organisms predominantly more special-

ized in a certain type of habitat have, on average, higher similarities among their species’ observed 

communities, than do groups which contain many species with more heterogeneous habitat prefer-

ences. Good examples for the former case are dragonflies and damselflies from ArtenFinder (observed 

often, but of course not always, close to waterbodies), with an average Simpson index value among 

observed communities of 0.80, and mollusks from iNaturalist (observations coming mostly from the 

coast) with an average Simpson index value among observed communities of 0.96. The second case of 

higher heterogeneity is apparent in birds both from ArtenFinder and iNaturalist: average Simpson in-

dex values among observed communities are 0.47 and 0.64, respectively. 

5.1.2 Species Composition of Observed Communities 

A look at the composition of observed communities, concerning the species they consist of, reveals an 

interesting fact: observed communities tend to be dominated by species from the species group of their 

target species. Table 5.1.1 and Table 5.1.2 demonstrate this for both data use cases and the most im-

portant species groups in either use case. A bird’s observed community is disproportionately dominat-

ed by birds. ArtenFinder observed communities of butterflies and moths have a much larger rate of 

this species group than would be expected from the composition of observations they were extracted 

from. The same effect can be found in ArtenFinder dragonflies’ and locusts’ observed communities, 

and in iNaturalist plants’ and mollusks’ observed communities. In some cases, observed communities 

are not dominated by the target species’ group, but by species of groups which are observed in close 

spatial proximity due to their similar ecological niches. This applies to ArtenFinder’s amphibians’ 

observed communities, which are dominated by dragonflies and damselflies also found often in or 

close to water bodies (but portions of amphibians themselves are also disproportionately high in these 

observed communities). Another case is iNaturalist’s “other species” observed communities, which 

are of various marine organisms, and dominated by (mostly marine) mollusks (again, with “other spe-

cies” also disproportionately high). ArtenFinder plants’ observed communities are dominated by but-

terflies and moths; in this case, there is obviously a spatial coincidence of these groups in the data 

collection process. 

Apart from this, all observed communities have relatively high mean portions of species groups which 

are dominant in the observation record of the respective project. E.g., ArtenFinder observed communi-

ties mostly have relatively high rates of butterflies and moths, which are mostly weak in those of iNat-

uralist data, while iNaturalist observed communities almost always feature a number of plants, mostly 

rare in ArtenFinder observed communities. Both ArtenFinder and iNaturalist observed communities 

mostly have more than 10% of birds (except the ArtenFinder butterflies and moths observed commu-

nities). 
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Table 5.1.1: ArtenFinder, mean rates of species groups in observed communities. 

Species groups 

Rates of spe-

cies groups in 

observations 

up to 2015 

(%) 

Mean rates (%) of species groups in observed communities of 

plants 

(n = 8) 

birds  

(n = 62) 

amphi-

bians  

(n = 8) 

butter-

flies and 

moths 

(n = 9) 

dragon-

flies and 

damsel-

flies  

(n = 30) 

locusts 

(n = 12) 

plants 6.4 19.2 1.2 1.0 1.5 0.5 0.0 

fungi 1.9 0.0 0.0 0.3 0.0 0.2 0.1 

mammals 2.4 1.8 4.7 1.9 1.2 2.6 0.7 

birds 41.8 19.9 70.4 23.1 7.8 17.4 12.4 

reptiles 1.7 1.2 3.0 7.3 4.2 3.9 5.4 

amphibians 1.6 0.0 1.4 18.0 0.8 4.0 0.9 

butterflies and 

moths 

28.9 46.5 5.4 9.3 61.1 15.2 19.0 

hymenopterans 0.7 1.5 0.9 1.2 4.0 1.9 3.4 

beetles 0.8 0.0 0.3 0.5 0.1 0.2 0.1 

dragonflies and 

damselflies 

9.2 2.8 10.5 30.7 11.7 46.5 12.5 

mantids 0.1 0.3 0.1 0.3 0.2 0.0 0.0 

locusts 3.4 5.7 1.9 6.3 7.1 7.4 45.4 

mollusks 0.3 1.0 0.0 0.2 0.3 0.2 0.1 

true bugs 0.1 0.0 0.1 0.0 0.0 0.0 0.0 

The cause of these effects can be found in the behavior of volunteers contributing to casual citizen 

science data collection portals: volunteers tend to specialize in certain species groups. Also, they tend 

to visit the same places repeatedly or even regularly. Both behaviors were discussed in section 2.2. 

They have a strong influence on the spatial properties of the data, leading to clustering of observations 

of certain species groups at certain places. The observed communities approach to plausibility estima-

tion for casual citizen science observations of organisms reveals this effect when examining neighbor-

hoods of a target species and aggregating them into an observed community. Also, general preferences 

of species groups by the participants in a project govern the overall composition of observed commu-

nities. This makes evident the fact that observed communities are different from natural species com-

munities due to the VGI nature of the data collection process. 
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Table 5.1.2: iNaturalist, mean rates of species groups in observed communities. *mollusks: mostly 
marine species. **”other species”: various marine organisms. 

Species groups 

Rates of spe-

cies groups in 

observations 

up to 2015 

(%) 

Mean rates (%) of species groups in observed communities of 

plants  

(n=69) 

birds  

(n=96) 

mollusks 

(n=34)* 

“other  

species” 

(n=10)** 

plants 33.4 66.3 0.7 16.3 11.9 

fungi 2.3 0.1 0.0 0.5 0.2 

mammals 4.2 1.0 1.1 1.9 2.6 

birds 32.0 18.1 96.1 28.0 29.3 

reptiles 5.2 5.8 0.5 0.2 0.0 

amphibians 1.6 0.8 0.0 0.1 0.0 

modern bony 

fishes 

0.4 0.0 0.0 2.2 0.8 

butterflies and 

moths 

6.7 2.0 0.2 1.2 0.9 

hymenopterans 1.1 2.6 0.2 0.2 0.1 

beetles 1.2 0.2 0.0 0.4 0.2 

dragonflies and 

damselflies 

1.7 0.4 0.1 0.0 0.0 

cockroaches 0.0 0.0 0.0 0.1 0.0 

locusts 0.3 0.0 0.0 0.1 0.0 

crustaceans 0.8 0.4 0.4 5.3 5.4 

mollusks 5.1 1.2 0.2 29.0 32.6 

„other species“ 2.1 0.4 0.4 14.4 15.9 

true bugs 0.6 0.5 0.0 0.0 0.0 

Going deeper into the observed communities’ species compositions, a pronounced influence of natural 

associations of species is revealed in some observed communities. It can be found in observed com-

munities of species which are often present in certain types of habitats, and thus also predominantly 

observed there. For instance, observed communities of most birds which are associated to water bodies 

contain mostly other species associated to water. Common Kingfisher (Alcedo atthis) has an Arten-

Finder observed community (Table 5.1.3) holding 14 species (excluding A. atthis itself). 50.0% of 

these are birds, and most of them are associated to water, such as Egyptian Goose (Alopochen aegyp-

tiaca, a species recently introduced to Rheinland-Pfalz), or Great Cormorant (Phalacrocorax carbo), 

and many more. The rest of the observed community is made up of an amphibian species and several 

dragonflies and damselflies, and only one species, Song Thrush (Turdus philomelos), not (or not only) 

associated to the Common Kingfisher’s typical habitats. Greylag Goose (Anser anser) can be observed 

mostly on lakes, ponds etc., but also foraging in adjacent fields. Its observed community (see Table 

5.1.3) with 36 species (excluding A. anser itself) is also dominated by birds (52.8%). Of these bird 

species, most are water fowl or other bird species associated to water bodies, and birds also found in 

open fields, such as Common Pheasant (Phasianus colchicus) and White Stork (Ciconia ciconia). Ad-

ditionally, most other species which are part of Greylag Goose’s observed community are typically 

associated to aquatic habitats or open fields, such as a number of dragonflies and damselflies, Nutria 

(Myocastor coypus), Brown Hare (Lepus europaeus), and an amphibian species. Even one species of 

butterfly, Lesser Purple Emperor (Apatura ilia), which is associated to Aspen (Populus tremula)45, a 

                                                      
45 https://arteninfo.net/elearning/tagfalter/speciesportrait/1707, last accessed on 2018-11-18 
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tree found typically close to water bodies, is part of Greylag Goose’s observed community, the only 

butterfly species in this list.  

Such considerations are necessarily burdened with a considerable amount of uncertainty, beginning 

with the classification of species in certain habitat preferences, which are often quite variable even for 

the more specialized species, and which are made even more uncertain by the mobility of many animal 

species. They are therefore hard to quantify (for this reason, I abstained from giving numeric ratios 

which would obscure uncertainty with false precision), and they are certainly debatable. The examples 

cited above nevertheless illustrate the joint influence, on observed communities, of natural species 

associations (overall dominance of species sharing the target species’ habitat preference) and VGI-

related factors (disproportionately high rates of species from the target species’ group within the ob-

served communities cited). The opportunistic nature of the data collection process obviously does not 

blur habitat preferences in these cases. It leads, however, to observed communities whose species 

compositions lean towards the respective target species’ group, and which are also governed by the 

general species group composition of the data pool from which they come. 

These findings can also be traced in members of other species groups. For example, dragonflies and 

damselflies, although mostly quite mobile, are predominantly observed close to water bodies, leading 

to observed communities which favor species which are associated to water. E.g., Southern Hawker 

(Aeshna cyanea), a large dragonfly, has an ArtenFinder observed community (see Table 5.1.3) with 

many other dragonflies and damselflies. Their dominance in the observed community can be expected, 

considering the effects described above, but they also match Southern Hawker’s habitat preference, as 

do species such as Grass Snake (Natrix natrix) and the amphibians in this observed community. How-

ever, the observed community also contains several species from other groups (a bird, a mammal, 

several butterflies, and a locust) which cannot be accounted as being especially attached to water bod-

ies, illustrating that the quite mobile Southern Hawker is also observed in other contexts than water 

bodies.  

The situation is in part different for species which are observed in many different habitats, either due 

to a lack of specific habitat preferences, or due to a high mobility, or both. For instance, European 

Greenfinch (Carduelis chloris) is widespread in Rheinland-Pfalz, occurring in a wide range of half 

open habitats, floodplain forest, and settled areas (Rößner et al. 2013). Its ArtenFinder observed com-

munity (see Table 5.1.4) of 26 species (not counting C. chloris itself) is a mix of species with unspe-

cific as well as many different specific habitat preferences. The observed community is, however, 

again dominated by birds (at 69.2%). Another example is the widespread moth Silver Y (Autographa 

gamma) whose observed community (see Table 5.1.4) has similar properties, now dominated by but-

terflies and moths instead of birds (due to the VGI-related influence described earlier, here even with a 

pronounced portion of moths).  

Similar examples can be found in iNaturalist data. Canada Goose (Branta canadensis), with similar 

habitat preferences as Greylag Goose, has only birds in its iNaturalist observed community (see Table 

5.1.5) of 11 species (excluding B. canadensis itself), again showing VGI-related influences. Almost all 

of them are associated to water bodies or open fields (governed by natural species associations). Black 

Oystercatcher (Haematopus bachmani), living on rocky coastlines, has an iNaturalist observed com-

munity (see Table 5.1.5) of 29 species (excluding H. bachmani), most of which are also found pre-

dominantly or seasonally along the coast (including 14 bird species dominating the observed commu-

nity at 65.6%). Seaside Daisy (Erigeron glaucus), also occurring mostly along California’s coastline, 

has only about 50% species typical for the coast in its observed community (see Table 5.1.5) which is 

dominated by plants. Meaningful examples of valid observed communities for common or widespread 

species are not so easy to find in this data use case, because the larger and ecologically more diverse 
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area of interest leads to very small observed communities for most very common species. For instance, 

Turkey Vulture (Cathartes aura), common and widespread throughout California, is associated only to 

itself, while no other species reaches the 50% threshold of occurrence in target observation neighbor-

hoods necessary to become part of an observed community (see Table 5.1.6). A similar case is pre-

sented by California Poppy (Eschscholzia californica), associated only to itself and two other very 

common and frequently observed species (Western Fence-lizard (Sceloporus occidentalis) and West-

ern Poison Oak (Toxicodendron diversilobum)) (see Table 5.1.6). This is, of course, in itself an effect 

of these species’ wide range of observation situations, proving their own commonness. California 

Scrub-jay (Aphelocoma californica), also very common in California and occurring in a wide variety 

of habitats46, has a seven-species observed community (excluding A. californica) dominated by birds 

(five out of seven species), with an overall majority of common species or species observed in many 

different habitats, such as Red-tailed Hawk (Buteo jamaicensis), Western Fence-lizard, California 

Poppy, and Anna’s Hummingbird (Calypte anna) (Table 5.1.6). 

It is important to stress that habitat preferences of a species will only show in observed communities if 

and when the data collection process propagates them into the data. A very common species with un-

specific habitat preferences which is observed only in certain specific situations will have an observed 

community which does not represent its commonness, but will be misleading from this point of view. 

This is less prominent for more specialized species, which can in fact be observed predominantly in 

situations matching their (main) habitat preference, but individuals of more mobile species may of 

course also be observed elsewhere, introducing other species into the observed community (but only if 

the frequency of such cases is high enough). An example for the latter case might be Middle Spotted 

Woodpecker (Dendrocopos medius), which prefers forests with trees providing coarse bark, mainly 

oaks (Rößner et al. 2013). The Middle Spotted Woodpecker’s 12-species ArtenFinder observed com-

munity (see Table 5.1.4) features a mix of species with different habitat preferences. Still, this list is a 

product of the underlying observation process, reflecting the properties of the data, and therefore suit-

able for evaluating a candidate context’s match with these data. 

In summary, these results show that the method developed for extracting observed communities, in-

cluding a restriction to frequently associated species and the identification and elimination of nonspe-

cific species, produces observed communities which mostly match a target species’ habitat prefer-

ences, within the VGI-related limitations and modified by the VGI properties of the data pool used.  

 

  

                                                      
46 http://www.audubon.org/field-guide/bird/california-scrub-jay, last accessed on 2018-11-18 
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Table 5.1.3: ArtenFinder, examples of observed communities: Common Kingfisher, Greylag Goose 
and Southern Hawker. Green: species which can be expected to be associated with the target species 
due to habitat preferences (source used for classification: ArtenInfo Rheinland-Pfalz47). 
Target  

Species 

Common Kingfisher 

(Alcedo atthis) 

Greylag Goose 

(Anser anser) 

Southern Hawker 

(Aeshna cyanea) 

Photos: C. Jacobs    

Observed 
Community 
(ArtenFinder) 

Birds: 
..Alcedo atthis 
..Alopochen aegyptiaca 
..Branta canadensis 
..Casmerodius albus 
..Cygnus olor 
..Fulica atra 
..Phalacrocorax carbo 
..Turdus philomelos 
Amphibians: 
..Rana kl. esculenta 
Dragonflies and damsel-
flies: 
..Aeshna cyanea 
..Anax imperator 
..Calopteryx splendens 
..Ischnura elegans 
..Orthetrum cancellatum 
..Sympetrum striolatum 

Mammals: 
..Lepus europaeus 
..Myocastor coypus 
..Sciurus vulgaris 
Birds: 
..Alcedo atthis 
..Alopochen aegyptiaca 
..Anas strepera 
..Anser anser 
..Aythya ferina 
..Aythya fuligula 
..Branta canadensis 
..Carduelis chloris 
..Casmerodius albus 
..Ciconia ciconia 
..Cuculus canorus 
..Cygnus olor 
..Fulica atra 
..Gallinula chloropus 
..Hirundo rustica 
..Luscinia megarhynchos 
..Phalacrocorax carbo 
..Phasianus colchicus 
..Podiceps cristatus 
..Tachybaptus ruficollis 
Reptiles: 
..Lacerta agilis 
Amphibians: 
..Rana kl. esculenta 
Butterflies and moths: 
..Apatura ilia 
Dragonflies and damsel-
flies: 
..Aeshna mixta 
..Calopteryx splendens 
..Coenagrion puella 
..Crocothemis erythraea 
..Ischnura elegans 
..Lestes viridis 
..Libellula fulva 
..Orthetrum cancellatum 
..Platycnemis pennipes 
..Sympetrum sanguineum 
..Sympetrum striolatum 

Mammals: 
..Sciurus vulgaris 
Birds: 
..Turdus philomelos 
Reptiles: 
..Natrix natrix 
Amphibians: 
..Bufo bufo 
..Rana kl. esculenta 
Butterflies and moths: 
..Aphantopus hyperantus 
..Argynnis paphia 
..Colias croceus 
..Papilio machaon 
..Pyronia tithonus 
Hymenopterans: 
..Vespa crabro 
Dragonflies and damsel-
flies: 
..Aeshna cyanea 
..Anax imperator 
..Calopteryx splendens 
..Calopteryx virgo 
..Coenagrion puella 
..Ischnura elegans 
..Lestes viridis 
..Libellula depressa 
..Libellula quadrimaculata 
..Orthetrum cancellatum 
..Platycnemis pennipes 
..Pyrrhosoma nymphula 
..Sympecma fusca 
..Sympetrum sanguineum 
..Sympetrum striolatum 
Locusts: 
..Oedipoda caerulescens 

  

                                                      
47 https://artenfinder.rlp.de/node/15 
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Table 5.1.4: ArtenFinder, examples of observed communities: European Greenfinch, Silver Y and 
Middle Spotted Woodpecker. Green: species which can be expected to be associated with the target 
species due to habitat preferences (not applicable to common and widespread C. chloris and A. gam-
ma; source used for classification: ArtenInfo Rheinland-Pfalz48). 
Target  

Species 

European Greenfinch 

(Carduelis chloris) 

Silver Y  

(Autographa gamma) 

Middle Spotted Wood-

pecker 

(Dendrocopos medius) 

Photos: C. Jacobs 
   

Observed 
Community 
(ArtenFinder) 

Mammals: 
..Sciurus vulgaris 
Birds: 
..Accipiter nisus 
..Alcedo atthis 
..Carduelis chloris 
..Carduelis spinus 
..Coccothraustes 
..coccothraustes 
..Coloeus monedula 
..Delichon urbicum 
..Fringilla montifringilla 
..Grus grus 
..Hirundo rustica 
..Milvus milvus 
..Parus palustris 
..Passer domesticus 
..Prunella modularis 
..Pyrrhula pyrrhula 
..Serinus serinus 
..Streptopelia decaocto 
..Turdus philomelos 
..Turdus pilaris 
Reptiles: 
..Podarcis muralis 
Butterflies and moths: 
..Lasiommata megera 
..Macroglossum 
..stellatarum 
..Papilio machaon 
Hymenopterans: 
..Xylocopa violacea 
Beetles: 
..Lucanus cervus 
Dragonflies and damsel-
flies: 
..Calopteryx virgo 

Mammals: 
  Sciurus vulgaris 
Birds: 
  Lanius collurio 
  Milvus milvus 
  Phasianus colchicus 
Reptiles: 
  Lacerta agilis 
Butterflies and moths: 
  Aphantopus hyperantus 
  Argynnis paphia 
  Aricia agestis 
  Autographa gamma 
  Camptogramma  
  bilineata 
  Chiasmia clathrata 
  Colias croceus 
  Colias hyale 
  Diacrisia sannio 
  Ematurga atomaria 
  Euclidia glyphica 
  Lasiommata megera 
  Leptidea sinapis s.l. 
  Macroglossum 
..stellatarum 
  Papilio machaon 
  Pyronia tithonus 
  Siona lineata 
  Thymelicus lineola 
  Thymelicus sylvestris 
Hymenopterans: 
  Vespa crabro 
Dragonflies and damsel-
flies: 
  Aeshna cyanea 
  Calopteryx splendens 
  Calopteryx virgo 
  Platycnemis pennipes 
  Sympetrum striolatum 
Locusts: 
  Oedipoda caerulescens 
  Tettigonia viridissima 

Mammals: 
  Sciurus vulgaris 
Birds: 
  Carduelis chloris 
  Cuculus canorus 
  Dendrocopos medius 
  Dryocopus martius 
  Lanius collurio 
  Turdus philomelos 
Reptiles: 
  Lacerta agilis 
Butterflies and moths: 
  Papilio machaon 
Dragonflies and damsel-
flies: 
  Calopteryx splendens 
  Ischnura elegans 
  Sympetrum striolatum 
Locusts: 
  Tettigonia viridissima 

  

                                                      
48 https://artenfinder.rlp.de/node/15 
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Table 5.1.5: iNaturalist, examples of observed communities: Canada Goose, Black Oystercatcher and 
Seaside Daisy. Green: species which can be expected to be associated with the target species due to 
habitat preferences (sources used for classification: Audubon Guide to North American Birds49; Jep-
son eFlora50, Alden et al. 1998). 
Target  

Species 

Canada Goose  

(Branta canadensis) 

Black Oystercatcher 

(Haematopus bachmani) 

Seaside Daisy 

(Erigeron glaucus) 

Photos: C. Jacobs    

Observed 
Community 
(iNaturalist) 

Birds: 
..Anas platyrhynchos 
..Ardea alba 
..Ardea herodias 
..Branta canadensis 
..Buteo jamaicensis 
..Calypte anna 
..Egretta thula 
..Fulica americana 
..Nycticorax nycticorax 
..Phalacrocorax auritus 
..Sayornis nigricans 
..Zonotrichia leucophrys 

Plants: 
..Erigeron glaucus 
..Eschscholzia californica 
Mammals: 
..Phoca vitulina 
..Zalophus californianus 
Birds: 
..Aechmophorus 
..occidentalis 
..Ardea alba 
..Ardea herodias 
..Arenaria melanocephala 
..Buteo jamaicensis 
..Calidris virgata 
..Egretta thula 
..Euphagus cyanocephalus 
..Gavia stellata 
..Haematopus bachmani 
..Larus occidentalis 
..Melanitta perspicillata 
..Melospiza melodia 
..Numenius phaeopus 
..Pelecanus occidentalis 
..Phalacrocorax auritus 
..Phalacrocorax pelagicus 
..Phalacrocorax 
..penicillatus 
..Sayornis nigricans 
..Zonotrichia leucophrys 
Crustaceans: 
..Pachygrapsus crassipes 
Mollusks: 
..Mytilus californianus 
..Tegula funebralis 
“Other species”: 
..Anthopleura 
..xanthogrammica 
..Pisaster ochraceus 
..Pollicipes polymerus 

Plants: 
..Achillea millefolium 
..Baccharis pilularis 
..Carpobrotus edulis 
..Diplacus aurantiacus 
..Dudleya farinosa 
..Erigeron glaucus 
..Eriogonum latifolium 
..Eriophyllum 
..staechadifolium 
..Eschscholzia californica 
..Fragaria chiloensis 
..Lupinus arboreus 
..Oxalis pes-caprae 
..Toxicodendron 
..diversilobum 
Birds: 
..Buteo jamaicensis 
..Calypte anna 
..Corvus corax 
..Larus occidentalis 
..Melospiza melodia 
..Pelecanus occidentalis 
..Zonotrichia leucophrys 
Mollusks: 
..Mytilus californianus 

  
                                                      
49 http://www.audubon.org/bird-guide 
50 Jepson Flora Project (eds.) 2018. Jepson eFlora, http://ucjeps.berkeley.edu/eflora 
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Table 5.1.6: iNaturalist, examples of observed communities of common and widespread species: Tur-
key Vulture, California Poppy and California Scrub-jay. 
Target  

Species 

Turkey Vulture 

(Cathartes aura) 

California Poppy (Esch-

scholzia californica) 

California Scrub-jay 

(Aphelocoma californica) 

Photos: C. Jacobs 
   

Observed 
Community 
(iNaturalist) 

Birds: 
..Cathartes aura 

Plants: 
..Eschscholzia californica 
..Toxicodendron 
..diversilobum 
Reptiles: 
.. Sceloporus occidentalis 
 

Plants: 
..Eschscholzia californica 
Birds: 
..Aphelocoma californica 
..Buteo jamaicensis 
..Calypte anna 
..Melozone crissalis 
..Sayornis nigricans 
..Zonotrichia leucophrys 
Reptiles: 
..Sceloporus occidentalis 

5.1.3 Nonspecific Species in Observed Communities 

An important last step in extracting observed communities consists in identifying so-called nonspecific 

species, and removing them from observed communities. In the evaluation whose results are discussed 

here, these are species which occur in 50% or more of the observed communities and were therefore 

considered not to contribute to the distinctness of these species lists. Table 5.1.7 presents the 46 spe-

cies identified as nonspecific species in evaluation with ArtenFinder data. The list of nonspecific spe-

cies has mostly birds (54.3%) and butterflies (43.5%), and one mammal. An examination of these spe-

cies reveals that they all share one or more of the following properties: they are very common, have 

rather unspecific habitat preferences, and are abundant and/or well detectable and identifiable. A 

threshold of 50% frequency in observed communities therefore seems reasonable (at least not too low, 

as it does not include more rare or more specialized species which would come as a surprise if identi-

fied as nonspecific species). The species listed in Table 5.1.7 are all among the top 82 of the most 

reported species in ArtenFinder observations from 2015 and earlier. Evaluation with iNaturalist data 

and the same parameters as in the ArtenFinder case does not render any nonspecific species. No spe-

cies is present in 50% or more of the iNaturalist observed communities.  
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Table 5.1.7: ArtenFinder, species identified as nonspecific species. (Species occurring in 50% or more 
of observed communities at the same time). Ordered descending by frequency of occurrence in ob-
served communities. 

Species Species Group 
Frequency in Observed 

Communities (%) 
European Peacock (Inachis io) butterflies 94,5 
Common Chaffinch (Fringilla coelebs) birds 93,8 
Small White (Pieris rapae) butterflies 93,5 
Red Admiral (Vanessa atalanta) butterflies 93,1 
Speckled Wood (Pararge aegeria) butterflies 92,4 
Common Buzzard (Buteo buteo) birds 92,1 
Eurasian Blackbird (Turdus merula) birds 91,1 
Great Tit (Parus major) birds 90,0 
Comma (Polygonia c-album) butterflies 90,0 
Green-veined White (Pieris napi) butterflies 89,7 
Common Brimstone (Gonepteryx rhamni) butterflies 89,3 
European Green Woodpecker (Picus viridis) birds 87,6 
European Robin (Erithacus rubecula) birds 87,3 
Common Blue (Polyommatus icarus) butterflies 86,3 
Eurasian Jay (Garrulus glandarius) birds 84,9 
Eurasian Blue Tit (Parus caeruleus) birds 84,9 
Small Heath (Coenonympha pamphilus) butterflies 84,5 
Small Tortoiseshell (Aglais urticae) butterflies 83,2 
Common Chiffchaff (Phylloscopus collybita) birds 81,8 
Meadow Brown (Maniola jurtina) butterflies 81,8 
Eurasian Blackcap (Sylvia atricapilla) birds 80,1 
Great Spotted Woodpecker (Dendrocopos major) birds 79,7 
Eurasian Wren (Troglodytes troglodytes) birds 79,7 
White Wagtail (Motacilla alba) birds 77,7 
European Starling (Sturnus vulgaris) birds 77,7 
Eurasian Kestrel (Falco tinnunculus) birds 76,6 
Marbled White (Melanargia galathea) butterflies 76,3 
Carrion Crow (Corvus corone) birds 75,9 
Grey Heron (Ardea cinerea) birds 74,9 
Map (Araschnia levana) butterflies 72,9 
Orange Tip (Anthocharis cardamines) butterflies 71,5 
Short-tailed Blue (Cupido argiades) butterflies 71,5 
Common Copper (Lycaena phlaeas) butterflies 70,1 
Eurasian Nuthatch (Sitta europaea) birds 67,0 
Yellowhammer (Emberiza citrinella) birds 66,7 
Common Wood Pigeon (Columba palumbus) birds 66,3 
Painted Lady (Vanessa cardui) butterflies 65,3 
European Goldfinch (Carduelis carduelis) birds 64,3 
Long-tailed Tit (Aegithalos caudatus) birds 63,6 
Western Roe Deer (Capreolus capreolus) mammals 61,2 
Eurasian Magpie (Pica pica) birds 60,8 
Black Redstart (Phoenicurus ochruros) birds 60,5 
Mallard (Anas platyrhynchos) birds 60,1 
Cabbage White (Pieris brassicae) butterflies 59,5 
Large Skipper (Ochlodes sylvanus) butterflies 59,1 
Holly Blue (Celastrina argiolus) butterflies 58,8 
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5.1.4 Differences in Similarity Values Between Sets of Candidate Observations 
with Observed Communities 

For evaluation purposes, a number of different sets of candidate observations were used to examine 

the observed communities approach’s ability to distinguish between candidate cases which can be 

expected to be, for the most part, plausible, and other candidates which are, for the most part, implau-

sible. 

First of all, similarity values and their distributions are markedly different from one another for the 

two different similarity indices used: Simpson index values are generally much higher than Jaccard 

index values. This is caused by the differing structures of the indices themselves. Jaccard index values 

are generally low, because the size of the intersection of the two lists involved is divided by the union 

of the two lists. The Jaccard index is therefore sensitive to the difference between the two lists in-

volved. In most cases, the candidate context introduces a large number of species into the calculation, 

which in turn causes Jaccard index values to be generally low. The opposite is true for Simpson index 

results: union is always put in relation to the length of the shorter of the two lists involved (which usu-

ally is the length of the observed community, in 72-80% of cases), so that index values are generally 

much higher.  

The results of the evaluation laid out in sections 4.1.1 and 4.1.2 show great differences in plausibility 

values obtained with the different candidate sets. In general, sets containing candidate observations 

which are expected to be found plausible by the approach (that is, candidates which should obtain high 

similarity values between candidate context and observed community), do indeed have relatively 

higher values than sets containing candidates which are expected to be found implausible by the ap-

proach (that is, candidates which should obtain low similarity values between candidate contexts and 

observed communities). However, for both plausible and implausible candidate sets, there are pro-

nounced differences between sets of real candidate observations and sets of synthetic candidate obser-

vations. Synthetic sets of candidates were especially designed to contain high portions of plausible or 

implausible observations (see section 3.3.2) while sets of real candidate observations have several 

issues which make them rather heterogeneous in this respect. 

Real approved observations in the sets AF_A and iNat_A show high similarity values relative to all 

sets of expectedly implausible candidates for both indices used in evaluation. However, results also 

show that they also contain observations which are evaluated as implausible by the observed commu-

nities approach. In distributions of Simpson index values, frequencies drop from a peak near 1.0 to-

wards lower index values, but frequencies are nowhere close to zero. In distributions of Jaccard index 

values (which are generally much lower, see above), frequencies also drop towards lower index values 

to the left of the frequency peak (which is not at or close to 1.0, but lower here), but also do not reach 

zero frequency of low index values. Based on these results, synthetic sets of plausible candidate ob-

servations were produced by placing synthetic candidate observations randomly but close to plausible 

observations of the same target species from the sets of approved observations, which produced the 

sets AF_SP and iNat_SP. Due to their spatial proximity to plausible observations, these synthetic can-

didate observations should also be plausible. As expected, these sets show much higher similarity val-

ues for both indices. Simpson index value frequencies of AF_SP and iNat_SP exhibit very strong 

peaks close to 1.0 and drop to zero (or close to zero) frequency well before similarity values of zero 

are reached. Frequencies of Jaccard index values in these sets peak at much higher values than before 

(although still not or not only close to 1.0) and drop to frequencies close to zero before reaching simi-

larity values of zero. We can draw two conclusions from these results. One, any candidate observation 

from a location close to a plausible observation of the same target species will be evaluated as plausi-

ble by the observed communities approach. What is more, this can be expected also for any candidate 
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observation located in a place which has a similar context, without necessarily having a previous ob-

servation of the target species close by. Two, many approved observations are evaluated as plausible 

by the observed communities approach, but some are not. This clearly shows that approval of a candi-

date observation may be (and often is) based on reasons other than a matching observation context. 

Validation procedures and reasons for approval of an observation in the two data use cases were de-

scribed in section 2.1. In both projects, photo proofs play a major role in approval of species identifi-

cation by experts (ArtenFinder) or by the community of observers (iNaturalist). Other reasons, such as 

observer experience and observation date, are also important. The location of the observation certainly 

plays a role, but it is not possible to judge in how far the geographic context in the form of species 

observed in proximity to a candidate observation is evaluated by experts or fellow observers. Arten-

Finder explicitly provides this information (a list of all species observed close to the candidate) to the 

expert evaluating a candidate observation, but it has proved to be too complex and time-consuming to 

use (see section 2.1.1). iNaturalist also has a tool which provides information on observations situated 

close to a candidate observation, and on species generally occurring in the proper region. There is 

currently no information available on how much this tool is actually used by co-observers when giving 

a species identification, when confirming it when or disagreeing with it. 

Similar conclusions as the above can be drawn for the sets of implausible observations. Two of these, 

the _R set (only available for ArtenFinder) and the _SI1 set, are based on real observations (see sec-

tion 3.3.2). AF_R is a set of observations which were rejected by ArtenFinder experts. Its similarity 

values are, however, rather high, although statistically lower than both AF_A and AF_SP similarities, 

but still the highest of all ArtenFinder sets expected to be dominated by implausible observations. This 

fact points to some issues concerning the data structure and properties of the AF_R set. Some of these 

have their cause in the quality assurance procedure which produces rejected observations. Reasons for 

rejecting an observation are not always based on suspecting the species identification or the observa-

tion location to be wrong. In some cases, observations are rejected for technical reasons, most often a 

missing or insufficient photo proof, required especially of volunteers who are beginners, or whose 

reputation for the species group in question is not sufficient. Also, any observation provided with a 

photo proof (required or not) can only be accepted by the validating expert if the photo gives unequiv-

ocal evidence of the correctness of the species identification. In all of these cases, there is some proba-

bility that the rejected observations involved are, in fact, correct, thus adding cases to the set of reject-

ed observations used in evaluation which would rather be expected to be plausible by the observed 

communities approach. However, as reasons for rejection are not recorded, these cases cannot be 

pruned from the AF_R set. Volunteers are provided with feedback, but this information, transmitted 

mostly by comments to the observation, or by email, cannot be readily used in analysis. I add here that 

the ArtenFinder quality assurance procedure was changed in spring 2016 by providing the possibility 

to put an observation on hold instead of rejecting it out-right. This change will undoubtedly lead to a 

reduction in rejection cases of this kind. 

The _SI1 sets were produced by swapping species identifications between observations of real ap-

proved observations which are of physically similar species living in different habitats and/or regions. 

Observations synthesized in this way can, to some extent, be expected to have implausible contexts. 

Indeed, AF_SI1 shows mostly lower Simpson and Jaccard index values than AF_A, but still overall 

much higher values than AF_SI2 and AF_SI3. iNat_SI1 also has mostly lower Simpson and Jaccard 

index values than iNat_A, but considerably higher than iNat_SI2 and iNat_SI3. Thus it can be said 

that observations of a species observed in locations where its physically similar counterpart was actu-

ally observed are indeed less plausible, considering their observation context, but usually do not ex-

pose very low similarity values with their observed communities. It is, however, also true that they 
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rarely have very high similarity values, which frequently occur in _A sets, and which dominate _SP 

sets.  

The frequency distribution especially of the similarity values of AF_SI1 shows some peculiarities. As 

can be seen from Figure 4.1.1, the AF_SI1 kernel density has two distinct peaks at medium values, at 

0.45 to 0.50, and at 0.60 to 0.65. Besides a higher variability in frequencies which can be expected for 

a smaller dataset, also typical “VGI effects” in the data play a role here. For instance, there is a body 

of 161 observations (almost 10% of valid AF_SI1 candidates) of the perching bird Yellowhammer 

(Emberiza citrinella), replaced in AF_SI1 by Cirl Bunting (Emberiza cirlus) with which it is often 

confused. All auf these 161 observations come from the same observer and were observed at the same 

location in 2016. The observer reported Yellowhammer from that location almost daily, obviously 

observing a certain spot very regularly over a longer period of time. At the location in question, the 

observations produce a Simpson index value of 0.45 with the wrong species identification of Cirl 

Bunting. A similar effect was produced by another observer who reported the reptile Common Wall 

Lizard (Podarcis muralis) very regularly in 2016 from a small area. For creation of the AF_SI1 set, 

the species for these 138 observations was replaced by Sand Lizard (Lacerta agilis), and the Simpson 

index value for these observations was 0.64. AF_A Jaccard values show a small peak between 0.9 and 

1.0. It is caused by 426 candidates of two bird species, Marsh Tit (with the scientific name Parus pal-

ustris in ArtenFinder) and Eurasian Collared Dove (Streptopelia decaocto). An observer provided 

reports of these two species from the same location consistently over several years, so that reports up 

to 2015 from this location dominated in creating the observed communities for these species, and can-

didate observations from 2016 from this location have high similarity values. iNat_A Jaccard similari-

ty values exhibit a similar case, here with a number of marine mollusks. These observations also cause 

the group of high Jaccard similarity values above ca. 0.8 in iNat_SP. Note also that the iNat_SP Jac-

card values distribution’s bimodality leads to a rather elongated boxplot in Figure 4.1.4, making a 

boxplot, strictly speaking, not a suitable way of visualizing such distributions. 

Candidate observations of _SI2 and _SI3 sets were synthesized from randomly placed observations 

away from known observations of their target species, with the aim of producing, as far as possible, 

very implausible observations. While _SI2 candidates were required to mirror the spatial properties of 

their target species’ known observations by being placed in situations with similar observation density, 

_SI3 observations were placed without this restriction. AF_SI3 and iNat_SI3 expose extremely low 

similarity values when compared to all other sets. AF_SI2 and iNat_SI2 similarity values are some-

what higher, but still much lower than _SI1 and AF_R sets (and, of course, than _A and _SP sets). 

Evaluation results with _SI2 and _SI3 sets tell us that the observed communities approach reliably 

identifies observations as implausible which come from locations away from earlier observations of 

the same target species, because these locations have mostly a different species context.  

5.1.5 Effects of Spatial Distribution of Observation Data on Similarity Values 

Due to their VGI origin and nature, casual citizen science observations of organisms show clustering 

(see section 2.1). Spatial density of observations is therefore variable. Candidate observations tested 

for plausibility, as well as target observations used for extracting observed communities, are found in 

different situations concerning spatial density of observations around them. Spatial observation density 

can be expected to have a positive influence on the number of species found around an observation. 

Both the Simpson and the Jaccard index use the intersection between two lists of species to measure 

similarity between the two lists. In this work, the two lists are the observed community of a target 

species, and the species context of a candidate observation. Obviously, if one of the two lists is large, 

this raises the probability of a larger intersection with the other list, leading to a higher similarity val-
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ue. Therefore, there may be an effect of the spatial properties of the data on index values. This section 

examines this effect and discusses consequences for the use of the Simpson and the Jaccard index as 

plausibility estimators. Results are mostly presented in the form of binned scatterplots, because num-

bers of points are mostly very high, and true distribution of points within the scatterplots would not be 

well visible in classic scatterplots which draw individual points. Strengths of relevant correlations are 

examined with Spearman’s Rho rank correlation coefficient, because the correlations involved often 

appear not to be linear. 

a) ArtenFinder, Simpson Index vs. candidate  
context size, Spearman’s Rho 0.65  
(p-value: < 2.2*10-16), n = 71,085 

b) iNaturalist, Simpson Index vs. candidate  
context size, Spearman’s Rho 0.48  
(p-value: < 2.2*10-16), n = 78,705 

 
c) ArtenFinder, Simpson Index vs. observed  
community size, Spearman’s Rho 0.09  
(p-value: < 2.2*10-16), n = 71,085 

d) iNaturalist, Simpson Index vs. observed  
community size, Spearman’s Rho 0.11  
(p-value: < 2.2*10-16), n = 78,705 

 
Figure 5.1.2: ArtenFinder and iNaturalist data, Simpson index values vs. candidate context size and 
observed community size (no. of species). 
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Simpson index values show a positive correlation with the numbers of species found around a candi-

date observation (i.e., candidate context size), which in turn depends on the number of observations 

found there (see Figure 5.1.2 and Figure 5.1.3). In other terms, candidate observations which are situ-

ated in areas with a higher observation density tend to have higher Simpson index values than candi-

date observations from regions with lower observation density. A higher number of species found 

around a candidate observation increases the chance of covering a larger number of observed commu-

nity species. However, there is no pronounced positive correlation between Simpson index values and 

numbers of species in observed communities (i.e., observed community size). The Simpson index 

always uses the length of the shorter list as denominator, which is usually the observed community. 

This is the case in 71.5% of all candidate cases in ArtenFinder sets, and in 79.7% of all candidate cas-

es for iNaturalist sets. Differences in observed community size are therefore mostly corrected for in 

Simpson index values, while effects of variable candidate context size remain. Note that p-values are 

often given here as “< 2.2*10-16“, this number representing the minimum value of the R function used 

for calculation (R package “stats”, function “cor.test”). 

a) ArtenFinder, Spearman’s Rho 0.88  
(p-value: < 2.2*10-16), n = 71,085 

 

b) iNaturalist, Spearman’s Rho 97  
(p-value: < 2.2*10-16), n = 78,705 

 
Figure 5.1.3: ArtenFinder and iNaturalist data, candidate context size (no. of species) vs. no. of sur-
rounding observations (all context observations counted). 

Figure 5.1.3 illustrates that observation density has a pronounced effect on candidate context size: the 

more context observations can be found in a candidate observation’s neighborhood, the more species 

will be listed in the candidate context. For the Simpson index, observation density therefore has a posi-

tive effect on similarity values and thus on the plausibility estimation: with the Simpson index as a 

plausibility indicator, observations from regions with higher observation density appear more plausible 

than observations from regions with low observation density. This may be regarded as problematic 

from a biological or ecological perspective: plausibility is raised merely because an observation is 

situated in an area with a higher observation density (e.g., because that area is visited more frequently 

by volunteers). From a VGI perspective, this is, however, correct: observations of organisms by volun-

teers tend to cluster (see section 2.1), and the probability for any observation to come from a region 

with high observation density is in fact higher, and thus also its actual plausibility. 

The Jaccard index is different from the Simpson index in putting the intersection of the observed 

community and the candidate context in relation to the union of the two lists involved. Consequently, 

there is no imbalance between the effects of candidate context size and observed community size. 
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Jaccard index values show positive correlation with both (see Figure 5.1.4), but correlation coefficient 

values are rather low. Still, Jaccard index values do show a positive correlation with both candidate 

context size and observed community size. Candidate context size was found to depend on the number 

of context observations found around the candidate observation (see Figure 5.1.3), but what may be 

the reasons for observed community sizes? Two possible reasons are examined in the following. 

a) ArtenFinder, Jaccard Index vs. candidate  
context size, Spearman’s Rho: 0.35  
(p-value: < 2.2*10-16), n = 71,085 

b) iNaturalist, Jaccard Index vs. candidate  
context size, Spearman’s Rho 0.20  
(p-value: < 2.2*10-16), n = 78,705 

 
c) ArtenFinder, Jaccard Index vs. observed  
community size, Spearman’s Rho 0.33  
(p-value: < 2.2*10-16), n = 71,085 

d) iNaturalist, Jaccard Index vs. observed  
community size Spearman’s Rho 0.32  
(p-value: < 2.2*10-16), n = 78,705 

 
Figure 5.1.4: ArtenFinder and iNaturalist data, Jaccard index values vs. candidate context size and 
observed community size (no. of species).  
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The first reason for differences in observed community sizes may be found in variable observation 

density: If observations of a target species, which are used to extract the observed community, are 

situated predominantly in areas with high observation density, they can be expected to have more ob-

servations around them, on average. This may lead to larger resulting observed communities, because 

(as was shown above) more observations usually represent more different species. This hypothesis was 

tested in the following way: For each target species, for which observed communities were extracted 

and used, the mean number of observations found around the observations used to extract the observed 

community was calculated. It was then tested whether the size of the resulting observed community 

depends to some degree on this number. The analysis found the expected positive correlations on the 

p ≤ 0.05 level, see Figure 5.1.5: the sizes of observed communities are indeed positively influenced by 

the observation density around the observations used to extract them.  

a) ArtenFinder, size of observed communities vs. 
mean numbers of observations surrounding  
observations used for observed community 
extraction, Spearman’s Rho 0.43  
(p-value 6.51*10-11), n = 216 

 

b) iNaturalist, size of observed communities vs. 
mean numbers of observations surrounding 
observations used for observed community 
extraction, Spearman’s Rho 0.70  
(p-value < 2.2*10-16), n = 234 

 
Figure 5.1.5 ArtenFinder and iNaturalist data, observed community size (no. of species) vs. mean 
observation numbers around target species observations up to 2015 (observations used for observed 
community extraction).  

A second cause which is not related to spatial observation density might also govern the size of ob-

served communities: there may be a correlation with the number of observations of a target species 

which are available for extracting an observed community for that species, because with more obser-

vations, more different situations with potentially more different species go into observed community 

extraction. However, Figure 5.1.6 illustrates that the sizes of observed communities show no signifi-

cant correlation (on the p ≤ 0.05 level) with the number of observations used for extracting them. De-

tailed analysis of this somewhat surprising result revealed that the lengths of context species lists be-

fore restriction to frequently associated species and removal of nonspecific species indeed exhibit a 

pronounced correlation with the number of observations of the corresponding target species, but that 

the subsequent processing steps dilute this correlation (see section 3.1 for details on observed commu-

nities extraction).  
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a) ArtenFinder, size of observed communities vs. 
observation numbers of target species,  
Spearman’s Rho -0.12, (p-value 0.06979),  
n = 216 

b) iNaturalist, size of observed communities vs. 
observation numbers of target species,  
Spearman’s Rho -0.07 (p-value 0.2542),  
n = 234 

 
Figure 5.1.6: ArtenFinder and iNaturalist data, observed community size (no. of species) vs. observa-
tion numbers of target species up to 2015 (observations used for observed community extraction).  

Similarity values calculated with the Simpson and Jaccard indices are governed by the species compo-

sition of candidate contexts and observed communities, and by the intersection of these two. In this 

section, another factor was identified and examined, which has an influence on the size of this inter-

section: variations in spatial observation density. With the Simpson index, this influence arises from 

observation density found around the candidate observation whose plausibility is estimated: candidate 

observations in areas with higher observation density tend to have larger candidate contexts, which 

may enlarge the intersection with the observed community, and consequently lead to higher Simpson 

index values. With the Jaccard index, the influence of this factor is smaller, but there is also moderate 

positive influence of higher observation density around observations used for extraction of the ob-

served community of a species, which makes the resulting observed community larger, which in turn 

may raise Jaccard index values. The underlying reason for both effects is that a larger candidate con-

text or a larger observed community both raise the chance of a larger intersection between the two 

lists. Due to the structure of the two indices, only candidate context size takes effect for Simpson in-

dex values in this way, while both parameters influence Jaccard index values. 

Casual citizen science observations of species have a variable spatial density and tend to cluster, which 

is due to their VGI nature and origin. Observations from areas with a higher observation density 

should appear more plausible, because they fit the spatial properties of existing data better, and this is 

what Simpson index values in part reflect. For Jaccard index values, VGI influence does not necessari-

ly follow this rationale: plausibility of candidate observations of species whose earlier observations are 

predominantly situated in areas with higher observation density may also be raised.  

How do these findings relate to evaluation results? Evaluation found significant differences between 

distributions of similarity index values of different sets of candidate observations. However, different 

sets of candidate observations also have different mean candidate context sizes as well as different 

mean observed community sizes (see Table 4.1.4 and Table 4.1.9). Differences in similarity values 

between these sets are therefore probably also due, in part, to the effects described above. For instance, 

AF_SI3 and iNat_SI3, with a mean candidate context size far below the average of sets in the respec-
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tive data use cases, but with observed communities about average in size, probably have low Simpson 

similarity values also because most of their candidates are situated in (relatively) low observation den-

sity places, while _SI3 Jaccard index values, also lowest of all sets, are probably also influenced by 

candidate context size, but to a lesser degree. AF_SI2 and iNat_SI2 also have very low Simpson and 

Jaccard similarity values (if not as low as the _SI3 sets), but with about average candidate context and 

observed community sizes, these cases must own their low similarities for both indices manly to dif-

ferences in species composition of candidate contexts and observed communities, with little or no 

effect of observation density. Other sets also show deviations of mean candidate context size and mean 

observed community size from the average in their respective data use cases, so that effects on similar-

ity values can be expected accordingly. In some cases, such as AF_SI1 and iNat_SI1, below-average 

observed community sizes (with mean candidate context sizes on the average level, respectively) 

probably have lower Jaccard similarity values than they would have with average spatial properties in 

observed community source data. In AF_SP, with above-average observed community sizes (and 

again with mean candidate context sizes on the average level), Jaccard index values can be expected to 

be raised, instead. In cases where both candidate context size and observed community size deviate 

from the average in the same direction, such as AF_R or iNat_SP, effects on both indices are probably 

weak. 

5.1.6 Correlation of Simpson and Jaccard Index in the Observed Communities 
Approach 

Despite the differences in behavior between Simpson and Jaccard indices, which came to light in the 

evaluation results, similarity values with the two indices usually point in the same direction for the 

same candidate case. A candidate case with a high Simpson index value can also be expected to have a 

relatively high Jaccard index value (see Figure 5.1.7). Coincidences of a high Simpson index value 

with a low Jaccard index value for the same candidate case may also occur. Due to the structure of the 

two similarity indices used here, the opposite case, consisting of a coincidence of a low Simpson index 

value with a high Jaccard index value, cannot occur. This is easily explained. A low Simpson index 

value is always associated with a low intersection of observed community and candidate context. A 

low intersection will always also lead to a low Jaccard index value. A high intersection of observed 

community and candidate context always leads to a high Simpson index value, while the Jaccard index 

value may be low if candidate context is very large.  

This also demonstrates that the two indices provide basically two different bases for plausibility esti-

mation. The Simpson index always closely follows the intersection of observed community and candi-

date context. If this intersection is large, the Simpson index value will be high. Species which are part 

of the candidate context, but which do not match the observed community, are completely disregard-

ed, but a large candidate context as a whole raises the chance for a large intersection and therefore, 

indirectly, the chance for plausibility being estimated as high. The Jaccard index includes more non-

matching species in the calculation, which leads to lower Jaccard index values in general, and very 

high numbers of such species lead to very small index values (and thus also low plausibility estima-

tions) in individual cases, especially when the observed community is small. 
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a) ArtenFinder, Spearman’s Rho 0.81  
(p-value < 2.2*10-16), n = 71,085 

b) iNaturalist, Spearman’s Rho 0.83  
(p-value < 2.2*10-16), n = 78,705 

 
Figure 5.1.7: Observed communities approach, Simpson vs. Jaccard index values.  
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5.2 OSM Environments Approach 

In the following, evaluation results of the OSM environments approach are discussed and compared to 

those of the observed communities approach. Using OSM environments instead of observed commu-

nities as a source of geographic context introduces some changes into plausibility estimation of an 

observation. These changes are founded in the fact that OSM environments are not only based on the 

observation dataset involved, but also on OSM data, an extrinsic dataset (from the perspective of the 

citizen science observation data). Discussion starts with looking at important properties of OSM envi-

ronments. Differences between the sets of candidates tested in evaluation, and their causes, are exam-

ined next. Discussion of evaluation results of the observed communities approach revealed influences 

of variable spatial density in the source of geographic context on similarity values. We will see that 

these influences are also present in the OSM environments approach. However, because the latter is an 

extrinsic source of geographic context, this has important consequences for the use of similarity values 

as plausibility indicators which differ from those with observed communities. 

5.2.1 Similarity of OSM Environments 

OSM environments are overall more similar to one another, than are observed communities (see Figu-

re 5.2.1). One of the reasons for this might be that there are much less tags involved than species. For 

instance, the 183 valid observed communities in the evaluation with ArtenFinder data consist of 367 

different species. Rheinland-Pfalz OSM environments consist of just 221 different tags. This may 

point to a more homogeneous structure of the geographic context information provided by OSM when 

compared to casual citizen science observations of organisms. This is to be expected, especially for 

urban, or more generally, settled areas: their inventory of real-world elements to be mapped in OSM is 

basically the same everywhere within each area of interest, and probably to some extent even similar 

between areas of interest. The OSM project is designed to work worldwide, and most of its tags are 

not specific to a certain country, region, or city. Mainz and Montabaur both feature residential streets 

tagged “highway=residential”, as do Monterey and Modesto, although their natural settings and city 

structures may be different. More differences can be expected for rural and natural areas, but infor-

mation density in OSM is also much lower there (see section 2.1.3). An example for a difference in 

natural factors between the two data use cases considered here is the prominence of “intermittent=*” 

tags in California OSM data vs. those from Rheinland-Pfalz, speaking of seasonally dry conditions in 

large parts of California, which are not present in Rheinland-Pfalz. 

Observed communities were found to be more similar among species of the same species group, and 

especially so if that species group contained predominantly species specialized in similar habitats, for 

instance, dragonflies and damselflies, or (mostly marine) mollusks. This effect is no longer traceable 

when OSM environments are used. ArtenFinder OSM environments of dragonflies and damselflies 

show a mean Simpson similarity among one another of 0.67, only slightly higher than the value for 

birds at 0.62, which are more mobile and far more varied in their habitat preferences. iNaturalist OSM 

environments have an average Simpson index value of 0.70 among birds, and a value of 0.56 among 

(mostly marine) mollusks, which is even lower although most species in the latter group share very 

similar habitats. This hints at a fundamental shift in factors causing OSM environments to be similar 

or different from one another, when compared to the factors which cause observed communities to be 

similar or different from one another. Basically, OSM environments can be expected to be similar if 

their target species are predominantly observed in places where OSM is similar. The next section ex-

amines tag composition of OSM environments in detail. 
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a) ArtenFinder, n = 85,078. 

 

b) iNaturalist, n = 201,295. 

 
Figure 5.2.1: ArtenFinder and iNaturalist data, Simpson and Jaccard similarities of OSM environ-
ments with >= 10 tags among one another. 

5.2.2 Tag Composition of OSM Environments 

Species composition of observed communities was found to be determined both by the target species’ 

habitat preferences and thus natural distribution and associations, and by VGI-related factors, especial-

ly spatial clustering of observations of the same species group due to volunteer preferences in the ob-

servation process. Natural species distribution may have some influence also on tag composition of 

OSM environments, because it may coincide at least to some degree with elements of geographic con-

text represented in OSM data. Mean rates of keys in all OSM environments (Table 5.2.1 and Table 

5.2.2) mirror the OSM data’s properties, which were presented in section 2.1.3, to some extent: keys 

with high tag counts or with high area or length sums dominate. “highway=*” tags, which include all 

kinds of traffic routes, from large highways to footpaths, lead in both average compositions of OSM 

environments, showing that most observations are made in areas which are accessible by some kind of 

“highway”. “landuse=*” and “natural=*” tags with their large area sums, and “surface=*” tags with 

their relatively large count and length sums, are also prominent in OSM environments of both areas of 

interest. In both use cases, “building=*” tags, although dominant in the OSM data used (see section 

2.1.3), are not very frequent within OSM environments, on average. This is mostly because the most 

prominent tag with this key, “building=yes”, is a nonspecific tag (see next section, Table 5.2.6 and 

Table 5.2.7) which was removed from OSM environments. 
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Table 5.2.1: Average composition of Rheinland-Pfalz OSM environments, aggregated by keys. 
Key Mean rate (%) 

highway 28.3 

landuse 14.7 

surface 11.2 

amenity 9.6 

building 8.2 

leisure 6.2 

natural 5.5 

barrier 5.1 

sport 4.7 

waterway 2.5 

place 2.2 

man_made 1.4 

aeroway 0.2 

water 0.1 

military 0.1 

 
Table 5.2.2: Average composition of California OSM environments, aggregated by keys. 
Key Mean rate (%) 

highway 36.0 

natural 16.0 

surface 13.4 

landuse 9.6 

leisure 8.7 

amenity 7.5 

building 5.6 

place 1.7 

waterway 0.6 

intermittent 0.5 

water 0.3 

aeroway 0.1 

wetland 0.1 

How far can landscape elements governing natural species distribution be traced in OSM environ-

ments? As we have seen in section 5.1.1, this question can be discussed by looking at some examples 

of target species which are often present, and therefore often observed, in certain geographic contexts. 

The example species used for discussing observed communities’ species composition in section 5.1.2 

mostly have too small OSM environments (numbers of tags smaller than 10) and are thus unsuitable 

for discussion here, because they were not actually used in evaluation. Therefore, comparable exam-

ples of other target species were selected for the present discussion. Table 5.2.3 presents the Rhein-

land-Pfalz OSM environments of three species associated to aquatic habitats. Eurasian Moorhen (Gal-

linula chloropus) and Small Red-eyed Damselfly (Erythromma viridulum) can be expected to be most-

ly observed on or close to ponds, small lakes or other stagnant or slowly flowing water bodies with 

well vegetated banks and submerged plants (Rößner et al. 2013; ArtenInfo Rheinland-Pfalz51). How-

ever, their OSM environments do not feature any tag fitting these habitat preferences, although tags 

such as “natural=lake”, “water=lake”, “water=pond” or “landuse=pond” are available in OSM, and 

                                                      
51 https://arteninfo.net/elearning/libellen/speciesportrait/265, last accessed on 2018-08-04 
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were part of the specific tag list used in this work. Obviously, these and other tags which could be 

directly connected to the target species’ habitat preferences do not occur frequently enough in OSM 

data in these species’ observations’ neighborhoods. Rather, the cited OSM environments consist of 

tags describing a quite unspecific context of infrastructure elements and a few natural elements such as 

“natural=wood” or “water=river”. To derive, from these OSM environments, hints towards the two 

species’ distribution would be speculative at best. They seem to imply that the two species are often 

observed close to non-automobile transportation infrastructure (“highway=bus_stop”, “high-

way=cycleway”), and in the periphery of urban or settled areas (“landuse=allotments”, 

“landuse=industrial”, “sport=soccer”, “sport=tennis”), but other interpretations are certainly possible. 

A somewhat similar case is presented by the OSM environment of Black-headed Gull (Larus ridibun-

dus), see Table 5.2.3. Again the bulk of tags is made up of unspecific transportation infrastructure, 

complemented here with a body of “building=*” tags. However, in this case, the presence of the tags 

“waterway=river” and “waterway=riverbank” reveals the species’ attachment to large water bodies 

such as rivers (Rößner et al. 2013).  

Table 5.2.3: ArtenFinder, examples of OSM environments: Eurasian moorhen, Black-headed Gull and 
Small Red-eyed Damselfly. 
Target  

Species 

Eurasian Moorhen  

(Gallinula chloropus) 

Black-headed Gull 

(Larus ridibundus) 

Small Red-eyed  

Damselfly 

(Erythromma viridulum) 

Photos: C. Jacobs    

OSM envi-
ronment 
(Rheinland-
Pfalz) 

barrier=fence 
highway=bus_stop 
highway=cycleway 
highway=living_street 
highway=steps 
highway=turning_circle 
highway=unclassified 
landuse=allotments 
landuse=industrial 
leisure=playground 
natural=wood 
sport=soccer 
sport=tennis 
surface=paving_stones 
tunnel=yes 

amenity=shelter 
barrier=fence 
barrier=wall 
building=garage 
building=house 
building=residential 
building=roof 
highway=bus_stop 
highway=crossing 
highway=cycleway 
highway=living_street 
highway=steps 
highway=turning_circle 
highway=unclassified 
landuse=commercial 
landuse=grass 
landuse=industrial 
leisure=park 
leisure=playground 
natural=tree 
railway=rail 
sport=soccer 
surface=concrete 
surface=paving_stones 
surface=unpaved 
tunnel=yes 
waterway=river 
waterway=riverbank 

barrier=fence 
highway=bus_stop 
highway=cycleway 
highway=steps 
highway=unclassified 
landuse=allotments 
landuse=farmyard 
landuse=industrial 
leisure=playground 
sport=soccer 
surface=unpaved 
tunnel=yes 
waterway=river 
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It is obvious from these examples, that OSM environments do not lend themselves as easily to be in-

terpreted from the perspective of the target species and its properties, as do observed communities. 

These examples show that composition of OSM environments is often rather dominated by data prop-

erties of OSM itself: “highway=*” tags, which have relatively high tag counts (see section 2.1.3), are 

also the most prominent bodies of tags in many OSM environments. However, some examples exist 

where the OSM environment also shows visible influence of the target species’ habitat preferences. It 

was already glimpsed in Black-headed Gull. Another more distinct example is presented by Grayling 

(Hipparchia semele), a butterfly living in warm and dry places with sandy or rocky substrates. They 

can be found on arid grassland, in clearings and forest aisles in dry forests, or in quarries52. Due to 

these specific habitat preferences, the species is rare in Rheinland-Pfalz, and provides just 31 accepted 

observations for OSM environment extraction. Table 5.2.4 shows that Grayling’s Rheinland-Pfalz 

OSM environment features many elements which point directly to the species’ habitat preferences, 

such as “man_made=cutline” (‘cutline’ is the term used for forest aisles in OSM53), “natu-

ral=bare_rock”, “natural=grassland” (used only for non-cultivated areas54), “natural=heath”, and 

“sport=climbing” (the latter pointing at rock formations used for climbing). “building=*” and “high-

way=*” tags are almost completely missing here, which shows that this species is observed mostly 

away from settlement areas and the usual access routes. However, such examples of OSM environ-

ments reflecting specifically the species’ habitat preferences are hard to find. Another example may be 

presented by Five-spot Burnet (Zygaena trifolii), a small, red-and-black moth mostly occurring on wet 

meadows55. Its OSM environment (Table 5.2.4) features tags pointing to rural settings (“ameni-

ty=hunting_stand”, “amenity=shelter”, “natural=peak”, “natural=spring”, “surface=dirt”, “sur-

face=unpaved”) and to meadows (“landuse=grass”, “natural=grassland”). 

Table 5.2.4: ArtenFinder, examples of OSM environments: Grayling and Five-spot Burnet. 
Target  

Species 

Grayling  

(Hipparchia semele) 

Five-spot Burnet 

(Zygaena trifolii) 

 

 
Photo: iNaturalist, © bferrero, some rights 

reserved (CC-BY-NC), cropped 

 
Photo: iNaturalist, © Dolors Bas Vall, some 

rights reserved (CC-BY-NC), cropped 
OSM envi-
ronment 
(Rheinland-
Pfalz) 

highway=emergency_access_point 
man_made=cutline 
military=bunker 
natural=bare_rock 
natural=grassland 
natural=heath 
natural=peak 
natural=spring 
sport=climbing 
surface=concrete 
surface=unpaved 

amenity=hunting_stand 
amenity=shelter 
barrier=fence 
highway=emergency_access_point 
landuse=grass 
natural=grassland 
natural=peak 
natural=spring 
surface=dirt 
surface=unpaved 
tourism=picnic_site 

Closer examination of California OSM environments renders comparable results. Table 5.2.5 presents 

some examples. Canada Goose, already used as an example in observed communities discussion (sec-

                                                      
52 https://arteninfo.net/elearning/tagfalter/speciesportrait/1696, last accessed on 2018-08-05 
53 https://wiki.openstreetmap.org/wiki/Tag:man_made=cutline, last accessed on 2018-08-04 
54 https://wiki.openstreetmap.org/wiki/Tag:natural=grassland, last accessed on 2018-08-04 
55 https://arteninfo.net/elearning/nachtfalter/speciesportrait/1566, last accessed on 2018-08-23 
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tion 5.1.2), has an OSM environment featuring mostly “highway=*” and “surface=*” tags, only “natu-

ral=water” hinting at a frequent association with aquatic habitats. Sea-fig or Freeway Iceplant (Car-

pobrotus edulis), a neophyte in California which is found exclusively in a number of coastal habitats56 

reflects its spatial distribution in its OSM environment by featuring the tags “natural=beach” and “nat-

ural=coastline”, but the list is still dominated by other tags. Finally, Sea Clown Triopha (Triopha cata-

linae), a marine mollusk living mostly on rocky coastlines, in tide pools and in kelp beds (Alden et al. 

1998,) has a more distinct OSM environment featuring a number of tags fitting its habitat preference, 

such as “leisure=nature_reserve”, “man_made=pier”, “natural=coastline”, “place=islet” and maybe 

also “tourism=viewpoint”, while “highway=*” tags are missing. A number of other marine organisms 

could be cited here, which have similarly specific OSM environments. 

Table 5.2.5: iNaturalist, examples of OSM environments: Canada Goose, Sea-fig and Sea Clown 
Triopha. 
Target  

Species 

Canada Goose 

(Branta canadensis) 

Sea-fig 

(Carpobrotus edulis) 

Sea Clown Triopha 

(Triopha catalinae) 

 

 
Photo: C. Jacobs 

 
Photo: C. Jacobs 

 
Photo: iNaturalist, © Alison Young, 

some rights reserved (CC BY-NC), 

cropped 
OSM envi-
ronment 
(Rheinland-
Pfalz) 

amenity=school 
barrier=gate 
bridge=yes 
highway=cycleway 
highway=secondary 
highway=tertiary 
highway=turning_circle 
highway=unclassified 
landuse=residential 
leisure=pitch 
natural=water 
surface=asphalt 
surface=paved 

barrier=gate 
bridge=yes 
highway=bus_stop 
highway=secondary 
highway=steps 
highway=stop 
highway=tertiary 
highway=turning_circle 
highway=unclassified 
landuse=residential 
leisure=pitch 
natural=beach 
natural=coastline 
natural=water 
surface=asphalt 
surface=paved 

barrier=fence 
barrier=gate 
landuse=industrial 
landuse=military 
leisure=nature_reserve 
man_made=pier 
natural=coastline 
natural=scrub 
natural=water 
natural=wood 
place=islet 
surface=dirt 
surface=unpaved 
tourism=viewpoint 

Summarizing these findings, OSM thematic data properties are the dominant factor determining the 

composition of OSM environments, making them more similar to one another, than are observed 

communities. Examples can be found where effects of a target species’ properties (especially habitat 

preferences) on an OSM environment’s tag composition are directly visible, but they are relatively 

rare. One of the reasons leading to these findings might be found in OSM’s semantic data structure. 

For many real-world elements, several tags are available, such as in the example of ponds and lakes 

used above. The available context information is therefore distributed over several tags, none of which 

is able to reach high enough frequencies to make it into the OSM environments. It might therefore 

make sense to conflate such tags semantically, and to create from them tag collections representing 

relevant properties of the environment. However, this would have to be done with great care, and pos-

sibly in different ways for individual species. 

                                                      
56Jepson Flora Project (eds.) 2018. Jepson eFlora, http://ucjeps.berkeley.edu/eflora 
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5.2.3 Nonspecific Tags 

Analog to the observed communities approach, where nonspecific species were identified and re-

moved from observed communities, so-called nonspecific tags were identified and removed from 

OSM environments. These were tags which occurred in 50% or more of the OSM environments and 

were therefore considered not to contribute to the distinctness of these lists of tags. Table 5.2.6 lists the 

25 tags identified as nonspecific in Rheinland-Pfalz. The list has mostly “highway=*” (28.0%), “sur-

face=*” (20.0), and “landuse=*” (16.0%) tags, mirroring high occurrence of these tags in the OSM 

dataset used. One highway tag (“highway=track”) even occurred in all OSM environments. Some 

others, such as “highway=path” and “building=yes”, came close. Even the tag “landuse=forest” 

reached more than 98% frequency in OSM environments from Rheinland-Pfalz OSM data.  

Table 5.2.6: Rheinland-Pfalz, tags identified as nonspecific tags. (Tags occurring in 50% or more of 
OSM environments at the same time). Ordered bescending by frequency of occurrence in OSM envi-
ronments. 

Tag 

Frequency in  

Rheinland-Pfalz OSM environments 

(%) 

highway=track 100.0 

highway=path 99.3 

building=yes 99.1 

landuse=forest 98.3 

surface=asphalt 96.8 

highway=service 95.9 

waterway=stream 95.3 

amenity=parking 92.9 

landuse=meadow 90.9 

landuse=residential 90.7 

highway=residential 90.4 

surface=gravel 90.1 

bridge=yes 89.8 

amenity=bench 88.7 

surface=paved 88.3 

surface=ground 84.1 

highway=footway 84.0 

landuse=farmland 81.0 

surface=grass 80.6 

natural=scrub 74.9 

highway=secondary 74.1 

natural=water 62.6 

leisure=pitch 61.4 

highway=tertiary 61.0 

barrier=gate 53.7 

In contrast to evaluation of the observed communities approach with iNaturalist (California) data, 

which did not render any nonspecific species, evaluation of the OSM environments approach in Cali-

fornia resulted in some nonspecific tags, see Table 5.2.7. “highway=*” tags dominate among them 

(reflecting high numbers of these tags in the OSM data used here). Frequencies of individual tags in 

valid OSM environments start much lower than in Rheinland-Pfalz, at 85.0% (“highway=service”). 
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However, almost all tags in this list are also found in Rheinland-Pfalz’ nonspecific tags, except “lei-

sure=park”, which is unique to the California list. 

Table 5.2.7: California, tags identified as nonspecific tags. (Tags occurring in 50% or more of OSM 
environments at the same time). Ordered by frequency of occurrence in OSM environments (desc.). 
Tag Frequency in  

California OSM environments (%) 

highway=service 85.0 

highway=residential 81.3 

highway=path 76.6 

highway=track 71.4 

building=yes 65.8 

amenity=parking 63.9 

waterway=stream 62.5 

leisure=park 58.4 

highway=footway 58.0 

5.2.4 Differences in Similarity Values Between Sets of Candidate Observations 
with OSM Environments 

The general findings discussed for differences in similarity values between sets of candidate observa-

tions in the observed communities approach (section 5.1.4) also hold for the OSM environments ap-

proach. Results presented in section 4.2 show, however, that differences in distributions of similarity 

values from sets of plausible or implausible observations (both real and synthetic) are in some cases 

smaller than in evaluation of the former approach. This is especially true for differences of plausible 

sets to synthetic implausible sets, the latter’s distributions of similarity values having shifted notably 

towards higher values, when compared to their observed communities counterparts. In these sets (_SI2 

and _SI3), synthetic observations where placed at random in places away from existing, plausible ob-

servations. With OSM data and their more homogeneous thematic properties, this procedure has a 

higher probability of placing a synthetic candidate observation in a position which is similar to situa-

tions in which the species is usually observed, concerning its OSM context. Thus, although these syn-

thetic candidates are often placed in regions with low observation density (see Figure 4.2.3 and Figure 

4.2.6), and therefore often further away from plausible observations than they were in the observed 

communities experiment, their similarity results are more similar to those of plausible sets than in the 

observed communities case. This is another proof of the fact that OSM data, as a context source, have 

different spatial properties than the observation data themselves. 

Some of the distributions of similarity values show peculiarities due to their VGI origin, which was 

already found in observed communities evaluation results. The similarity value distributions of 

AF_SI1 show a peak at ca. 0.8 (Simpson similarity) and at ca. 0.4 (Jaccard similarity), caused by a 

body of ca. 240 candidate observations (mainly of Cirl Bunting and Marsh Tit) with relatively high 

Simpson and Jaccard similarity values which were contributed by a single observer, all from the same 

location. iNat_SP Jaccard similarity values show a secondary peak at relatively high values of ca. 0.6-

0.9, corresponding to the high-similarity iNat_A candidate observations they are based on (see chapter 

3.3.2). Again, this bimodality leads to a rather elongated boxplot compared to those of the other simi-

larity distributions. A Boxplot is, strictly speaking, not a suitable way of visualizing this distribution, 

while the kernel density plot used in Figure 4.2.4 conveys a better picture. 
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5.2.5 Effects of Spatial Distribution of OSM Data on Similarity Values 

Observed communities evaluation results exposed effects of the spatial properties of observation data 

on similarity values (section 5.1.5). As the OSM environments approach uses identical similarity indi-

ces, these effects are also present in similarity values with the OSM environments approach. However, 

with OSM data as an extrinsic source of geographic context, there are important consequences con-

cerning the interpretation of these effects when using similarity values as plausibility indicators. 

a) ArtenFinder, Simpson Index vs. candidate 
OSM context size, Spearman’s Rho 0.73  
(p-value: < 2.2*10-16), n = 49,798 

 

b) iNaturalist, Simpson Index vs. candidate OSM 
context size, Spearman’s Rho 0.63  
(p-value: < 2.2*10-16), n = 76,675 

 
c) ArtenFinder, Simpson Index vs. OSM environ-
ment size, Spearman’s Rho 0.16  
(p-value: < 2.2*10-16), n = 49,798 

 

d) iNaturalist, Simpson Index vs. OSM environ-
ment size, Spearman’s Rho 0.04  
(p-value: < 2.2*10-16), n = 76,675 

 
Figure 5.2.2: ArtenFinder and iNaturalist data, Simpson index values vs. candidate OSM context size 
and OSM environment size (no. of tags).  
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a) ArtenFinder, Jaccard Index vs. candidate OSM 
context size, Spearman’s Rho: 0.43  
(p-value: < 2.2*10-16), n = 49,798 

b) iNaturalist, Jaccard Index vs. candidate OSM 
context size, Spearman’s Rho 0.09  
(p-value: < 2.2*10-16), n = 76,675 

 
c) ArtenFinder, Jaccard Index vs. OSM environ-
ment size, Spearman’s Rho 0.46  
(p-value: < 2.2*10-16), n = 49,798 

d) iNaturalist, Jaccard Index vs. OSM environ-
ment size, Spearman’s Rho 0.39  
(p-value: < 2.2*10-16), n = 76,675 

 
Figure 5.2.3: ArtenFinder and iNaturalist data, Jaccard index values vs. candidate OSM context size 
and OSM environment size (no. of tags).  

Simpson similarity values show a positive correlation with numbers of tags in candidate OSM contexts 

(Figure 5.2.2). If a candidate observation is situated in a place where many different OSM tags can be 

found in the relevant neighborhood, this raises chances for a higher similarity value with the target 

species’ OSM environment. Such observations have higher chance to appear more plausible in light of 

Simpson similarity. There is no pronounced correlation of Simpson index values with OSM environ-

ment size. Correlation of candidate OSM context size with ArtenFinder Jaccard index values is lower 

than with Simpson index values, and there is a correlation of Jaccard index values with OSM envi-

ronments size on about the same level (Figure 5.2.3). Jaccard index values with iNaturalist data are 

only very weakly associated with candidate OSM context size. However, the findings here are basical-

ly analog to results obtained with the observed communities approach. The Simpson index correlates 
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with candidate context size, which is due to the asymmetry of sizes of OSM environments and candi-

date context, the former being usually smaller, in 74.1% of ArtenFinder cases, and in 82.5% of iNatu-

ralist cases. The Jaccard index, using the union of OSM environment and candidate context as its de-

nominator, shows weaker correlations with both candidate context size and OSM environment size. 

What do these findings mean for the use of similarity index values as indicators of plausibility of a 

casual citizen science observation if OSM provides geographic context, instead of observed communi-

ties? Observation data of organisms and OSM data come from completely separate projects. Although 

the basic factors governing data collection are similar to a high degree (as was demonstrated in section 

2.2), the actual data collection processes are not connected to one another. In the observed communi-

ties case, a candidate observation which is located in a situation with a high observation density 

around it (which may lead to a larger candidate context, raising the probability of a higher Simpson 

similarity) very properly has a higher probability of a higher plausibility estimation, because it is situ-

ated in a place where it is per se more likely for an observation to come from. However, this rationale 

does not hold if an extrinsic source of geographic context is involved, whose spatial properties are 

governed by completely independent processes. If a candidate observation is placed in a situation 

which renders a large number of tags, this will raise the probability of a higher plausibility evaluation 

for the candidate, which may lead to a bias in plausibility estimation based on the Simpson index. The 

Jaccard index, with its weaker association between index values and candidate OSM context size, 

suffers less from this effect, and seems to be, from this perspective, a more suitable index for plausibil-

ity estimation for casual citizen science observations of organisms with the OSM environments ap-

proach. However, it also does show positive correlation with candidate OSM context size and with 

OSM environment size. 

Detailed analysis of evaluation results with the observed communities approach suggested observation 

density around candidate observations as a factor influencing candidate context size and observed 

community size (see section 5.1.5). An analog factor cannot, however, be determined in the OSM 

environments approach. There is no proper spatial “tag density” in OSM data which would be compa-

rable to observation density. The OSM environments approach uses the tag information attached to 

OSM objects to characterize geographic context. There is an n to n relationship between OSM objects 

and tags, which was already discussed when OSM data use cases were described in this work (see 

section 2.1.3): an object may (and usually does) carry several tags, and an object may also be seg-

mented into several parts all carrying the same tag or tags. Instead of using spatial object density, a 

possible substitute might be OSM information density, that is, the number of different tags found 

around an observation (including nonspecific tags). For the reasons reiterated above, this parameter 

was already used to characterize the spatial properties of OSM data within the respective areas of in-

terest (see section 2.1.3).  

A candidate OSM context is, of course, basically the list of different OSM tags found around a candi-

date observation, from which only the nonspecific tags were removed. Unsurprisingly, candidate OSM 

context size therefore correlates to a high degree with OSM information density around a candidate 

(see Figure 5.2.4). Therefore, Simpson similarity has a higher probability of a higher value if a candi-

date observation is situated in a neighborhood with a high number of different OSM tags. 
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a) ArtenFinder, Spearman’s Rho 0.99  
(p-value: < 2.2*10-16), n = 49,798 

b) iNaturalist, Spearman’s Rho 1.00  
(p-value: < 2.2*10-16), n = 76,675 

 
Figure 5.2.4: ArtenFinder and iNaturalist data, candidate OSM context size (no. of tags) vs. no. of 
surrounding tags (OSM information density).  

What are the factors which influence OSM environment size? Here similar parameters come to mind 

which were already examined for the observed communities approach. On the one hand, this is OSM 

information density around observations of target species: more diverse OSM contexts around target 

species observations (which are used for OSM environment extraction) may lead to larger OSM envi-

ronments. On the other hand, there is the number of observations of target species used for OSM envi-

ronment extraction: more target species observations represent more OSM context situations, which 

might lead to larger OSM environments. In contrast to findings with the observed communities ap-

proach, Spearman’s Rho does not measure a pronounced correlation between OSM information densi-

ty (expressed in the mean number of different tags found around a target species’ observations) and 

OSM environments size, see Figure 5.2.5. Differences in OSM environment sizes are therefore proba-

bly not influenced by spatial differences in how many different tags can be found around observations 

of a target species used for OSM environment extraction. A candidate observation of a target species 

whose earlier observations (used for OSM environment extraction) are predominantly situated in plac-

es with many different tags around them is not likely to appear more plausible when the Jaccard index 

is used as a plausibility indicator. Analog to the observed communities approach, the sizes of OSM 

environments also show no pronounced correlation (on the p ≤ 0.05 level) with the number of observa-

tions used for extracting these OSM environments (Figure 5.2.6). 
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a) ArtenFinder, size of OSM environments vs. 
mean numbers of different tags surrounding ob-
servations used for OSM environment extraction, 
Spearman’s Rho -0.02 (p-value 0.6187),  
n = 402 

 

b) iNaturalist, size of OSM environments vs. 
mean numbers of different tags surrounding ob-
servations used for OSM environment extraction, 
Spearman’s Rho 0.12 (p-value 0.003051),  
n = 635 

 
Figure 5.2.5: ArtenFinder and iNaturalist data, OSM environment size (no. of tags) vs. mean nos. of 
surrounding tags of target species observations up to 2015 (observations used for observed communi-
ty extraction).  

 

b) ArtenFinder, size of OSM environments vs. 
observation numbers of target species, Spear-
man’s Rho -0.10 (p-value 0.04919),  
n = 402 

 

d) iNaturalist, size of OSM environments vs. ob-
servation numbers of target species, Spearman’s 
Rho -0.25 (p-value 1.627*10-10),  
n = 635 

 
Figure 5.2.6: ArtenFinder and iNaturalist data, OSM environment size (no. of tags) vs. observation 
numbers of target species up to 2015 (observations used for observed community extraction).  
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5.2.6 Correlation of Simpson and Jaccard Index in the OSM Environments Ap-
proach 

Analog to the observed communities approach, Simpson and Jaccard indices usually point in the same 

direction for the same candidate case (see Figure 5.2.7) also with OSM environments. Again, coinci-

dences of a high Simpson index value with a low Jaccard index value for the same candidate case may 

occur, while opposite cases of a low Simpson index value with a high Jaccard index value may not. 

Reasons for this were explained in section 5.1.6. Association between the two indices is weaker here 

than in the observed communities approach, with more cases of contradicting index values for the 

same candidate. 

a) ArtenFinder, Spearman’s Rho 0.74  
(p-value < 2.2*10-16), n = 49,798 

b) iNaturalist, Spearman’s Rho 0.60  
(p-value < 2.2*10-16), n = 76,675 

 
Figure 5.2.7: OSM environments approach, Simpson vs. Jaccard index values.  
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5.3 Discussing Results of Sensitivity Analysis 

The sensitivity analysis which is discussed in this section, and which was conducted with different 

parameter settings and some methodological modifications, sheds light mostly on the behavior of the 

proposed observed communities approach to plausibility estimation for casual citizen science observa-

tions of organisms, because analysis was conducted mostly with this approach (see section 3.4). This 

behavior is determined by complex mechanisms taking effect if parameters are changed or methodo-

logical components added, and also by differences in data properties between the two data use cases 

the approach was applied to. 

Most analyses rendered results where the relations between sets of plausible observations and sets of 

implausible observations did not critically change, and differences remained statistically significant, 

but there is typically a tradeoff between a raise in contrast between distributions of similarity values of 

plausible and implausible observations on the one hand, and a drop in effectiveness (numbers of valid 

observed communities and candidates) on the other hand. However, changes in differences between 

distributions of similarity values of plausible and implausible sets are generally small, and results are 

basically similar, in this aspect, for all parameters and methodological modifications. In other terms, 

the observed communities approach basically keeps working as a method for plausibility estimation of 

casual citizen science observations of organisms with many different parameter settings and methodo-

logical modifications. These settings and modifications can therefore be geared to specific properties 

of data use cases, or to specific knowledge-based preferences of domain experts involved. However, 

performance might suffer especially in terms of number of species and candidates which can be evalu-

ated. The following subsection discusses the results obtained in sensitivity analysis in more detail. 

5.3.1 Using a Lower Minimum Requirement for Approved Observations in Ob-
served Community Extraction 

Results with this parameter change show that a low minimum requirement for approved observations 

per target species in observed community extraction can be employed for raising the effectiveness of 

the observed communities approach, without deteriorating its ability to distinguish between plausible 

and implausible observations. Lowering this threshold allows for candidate observations of rarely ob-

served target species to be evaluated by the approach. Among valid observed communities from Ar-

tenFinder data, target species can now be found which are quite rarely occurring in the respective area 

of interest, such as Short-eared Owl (Asio flammeus), a rare passage migrant in Rheinland-Pfalz with 

just 10 accepted observations in ArtenFinder up to 2015. Their nocturnal mode of life may also be a 

factor in making them a rarely observed species. Also, species are now evaluated which are common 

and widespread, and easy to observe, but still rarely reported. For instance, the plant species Common 

Agrimony (Agrimonia eupatoria) is common and widespread in Rheinland-Pfalz, and therefore not in 

ArtenFinder’s focus on protected and threatened species (see section 2.1.1). It was reported and ap-

proved just 10 times up to 2015. iNaturalist features similar examples. For instance, Black-capped 

Chickadee (Poecile atricapillus), a common passerine bird which, in California, occurs only in a rela-

tively small area in the extreme northwest of the state57, was observed and approved only 10 times in 

California up to 2015, but has now a valid observed community. 

  

                                                      
57 https://www.audubon.org/field-guide/bird/black-capped-chickadee, last accessed on 2018-11-16 
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5.3.2 Using Variable Radii for Species Groups 

Using a larger search radius for certain species groups aimed to obtain observed communities and 

candidate contexts which match these species’ relevant neighborhoods better. Observed communities 

as well as candidate contexts were indeed larger on average with the radius configuration used here. 

Of course only observed communities of species belonging to groups with 2,000 m or 3,000 m radii 

changed here, while observed communities of species which still used a radius of 1,000 m remained 

unchanged. However, enlarging search radii for whole groups does not take into account the inherent 

variability in species properties within the groups. This can easily be demonstrated using two bird 

species examples which were already discussed above. Common Kingfisher’s ArtenFinder observed 

community was now much larger (40 vs. 14 species), but also much more unspecific, because now 

only about half of the species could be accounted as being associated to water bodies, where Common 

Kingfisher is usually observed. Greylag Goose, usually present on lakes, ponds etc. and in adjacent 

fields, also had now a notably larger observed community (70 vs. 36 species). The rate of species 

which can be accounted as typically observable on lakes or in open fields also dropped. These two 

examples show that some target species which are mobile, but associated mostly to certain habitats, 

render observed communities with a larger search radius which are matching the target species’ habitat 

preferences less well than before. The dragonfly species Southern Hawker’s observed community was 

actually smaller in this experiment, than it was in the evaluation (with just 10 vs. a former 26 species), 

and remained dominated by species which can be expected to be observed on proximity to this target 

species, thus not confirming the effect found in the observed communities discussed above.  

Observed communities of species with more unspecific habitat preferences already included other 

species with rather unspecific habitat preferences, as well as many more specialized species. This re-

mained mostly the same. European Greenfinch’s observed community (an example for a common 

species with relatively unspecific habitat preferences already discussed above) was now much larger 

as well (53 vs. 26), and still had a mix of more common and more specialized species, the latter with 

many different habitat preferences. The observed community of Silver Y (a common moth) was 

smaller with a larger search radius of 2,000m (25 vs. 31 species), but its properties remained similar. 

iNaturalist showed similar trends: observed communities became generally larger, and observed com-

munities of species with more specialized habitat preferences became more unspecific in the process. 

E.g., Canada Goose’s observed community grew to 42 species and only about half of its species had a 

stronger association to water bodies or adjacent open fields. The observed community of Black Oys-

tercatcher, grown from 29 to 93 species, also lost focus in the process, but managed to remain domi-

nated by species associated to the coast. Seaside Daisy’s observed community did not change in this 

analysis, because plants’ search radius remained at 1,000 m. The common and widespread species 

Turkey Vulture now had a larger if still quite small observed community with nine species (besides 

Turkey vulture itself), composed of a wide variety of species, other common species as well as other 

ones more specialized in a variety of habitats. California Scrub-jay, with 32 species in its (now valid-

size) observed community (was 7) also remained associated with a wide variety of species with differ-

ent preferences. 

These examples make it clear that enlarging the search radius for certain species groups does not in-

troduce any advantage which might lead to a better performance of the approach. Species with a low 

mobility and/or a high specialization on certain habitats should be treated with relatively small search 

radii, the evaluation conducted above providing a good benchmark at 1,000 m. More common species 

with more unspecific habitat preferences, and/or more mobile species do not gain advantages from a 

larger search radius, either.  
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Summarizing these results, a larger search radius for certain species groups increases the diversity in 

ArtenFinder observed communities, which leads to a much higher number of nonspecific species caus-

ing a drop in the number of valid observed communities. Contrast between index value distributions is 

rather reduced. With iNaturalist data, the number of valid observed communities increases, while con-

trast between similarity index value distributions is also reduced. Enlarging the search radius for cer-

tain species groups in the way tested here does not overall improve the approach’s ability to distin-

guish between plausible and implausible observations (although the change allows for including more 

species in the analysis in the case of iNaturalist data). Observed communities do not become more 

specific to the target species’ properties. 

5.3.3 Shifting Frequency Thresholds for Frequent Co-Observations and Non-
specific Species 

Raising the frequency threshold for identifying frequently associated context species to the level tested 

here (0.75) has mostly negative effects on the performance of the observed communities approach, 

leading to lower numbers of valid species and candidate observations, and reducing differences be-

tween sets of plausible and implausible observations. Lowering this threshold has mixed effects on 

effectiveness in terms of species and candidate observations evaluated, as well as on evaluation results 

(differences between plausible and implausible sets).  

Changing the threshold for identifying nonspecific species affects directly the number of these species, 

which bears directly on numbers of valid species and candidate observations. Results, however, re-

main quite stable with both a reduced and a raised threshold value. 

5.3.4 Using Auxiliary Land Cover and Ecological Land Unit Information 

Using auxiliary land cover geometries aimed to obtain more focused observed communities and can-

didate contexts in terms of the ecology of the target species. How did the observed communities react 

to the use of auxiliary land cover or ecological land unit information concerning their species compo-

sition? In the ArtenFinder use case, the mean size of observed communities dropped, while the num-

ber of observed communities remained constant. In the iNaturalist case, average size was raised with 

NLCD data, because many small valid observed communities were lost, and dropped with ELU data. 

Let us look again at species examples which were already discussed above. To start with ArtenFinder 

data combined with CORINE land cover, Common Kingfisher`s ArtenFinder observed community 

had now only five species left, most of which matched this target species’ habitat preference. Greylag 

Goose was now exclusively associated to water fowl and other species associated to water, in a thus 

more focused observed community of just 12 species. Southern Hawker’s observed community was 

just three species smaller than it was in evaluation of the approach, but its share of species which 

would be expected to be associated with this target species rather dropped. With ELU data, Common 

Kingfisher’s four-species observed community was no longer dominated by species associated to wa-

ter. Greylag Goose had 16 associated species when ELU data were used, most of which shared its 

habitat preferences. The ELU observed community of Southern Hawker mostly shared the properties 

of this target species’ result with CORINE. Considering these examples, the effect of using CORINE 

or ELU data with ArtenFinder observations was quite mixed. However, some species did have ecolog-

ically more focused observed communities, albeit also much smaller ones, most of them dropping in 

size below the threshold of 10 species.  

With NLCD data, Canada Goose’s only remaining associated species was Mallard (Anas platyrhyn-

chos), a common species of duck. With ELU data, it had six associated species, all birds and mostly 
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water fowl. Black Oystercatcher, with NLCD data, also had a much reduced observed community with 

10 species, almost all associated to the coast. With ELU data, which do not include marine habitats, its 

observed community was empty. Seaside Daisy was associated with just Seaside Wild Buckwheat 

(Eriogonum latifolium) when NLCD data were used; with ELU data, its observed community was also 

empty.  

In summary, using auxiliary land cover or ecological land unit geometries mostly increases the differ-

ences between distributions of similarity values of plausible and implausible candidate sets with both 

ArtenFinder and iNaturalist data, and leads to more specific observed communities in some cases. 

However, with iNaturalist data the ensuing strong decrease in effectiveness makes this modification 

problematic, at least in the constellation of parameters used here. 

5.3.5 Using a Quantitative Similarity Index 

Looking at results obtained with the Similarity Ratio, frequency weighting might be beneficial to the 

performance of the observed communities approach with ArtenFinder data, while using the mean dis-

tance of context species observations did not change evaluation results. For the iNaturalist data use 

case, there was found no positive effect of using a quantitative similarity index with the parameters 

tested here on the observed communities approach’s ability to distinguish between sets of plausible 

and implausible observations. 

5.3.6 Edge Effects 

Results of this experiment demonstrate that edge effects are minimal in evaluation results for both data 

use cases. The results suggest that using a guard zone around the state lines of Rheinland-Pfalz and 

California would not change evaluation results in any significant way. Working without edge effect 

correction holds the advantage of not losing candidate cases or target species observations at the edge 

of the area of interest. In practical use of the observed communities approach to plausibility estimation 

of casual citizen science observations of organisms, it should, however, be noted that the context of a 

single candidate observation may be severely influenced by its position close to the edge of the area of 

interest. Similarity values, or the plausibility estimations based on them, should be accompanied by a 

proper note in these cases.  

5.3.7 Variant of the Simpson Index 

The variant derived from the Simpson index which was proposed in section 3.4.7 has the advantage of 

providing a uniform interpretation of the index value in all candidate cases. Results with the variant 

were found not to differ much from evaluation results with the original Simpson index. In the context 

of this work, the proposed variant of the Simpson index therefore suggests an alternative to the origi-

nal Simpson index. 

5.3.8 Using Date-Specific OSM Context 

Looking at the substantial drop in effectiveness through the loss of valid species and candidates (espe-

cially in the ArtenFinder use case) while results in terms of relations between distributions if similarity 

values remain basically the same, it can be said that results with date-specific OSM context do not 

advocate the use of this methodological modification. Taking the perspective of an individual species 

or candidate case, however, might change this conclusion. If, for instance, the neighborhoods of many 
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prior observations of a target species experienced substantial changes which make an OSM environ-

ment based on the current state of OSM deviate strongly from the actual state at the dates of observa-

tion, a date-specific procedure would of course be beneficial. The same is true for the extraction of the 

OSM context of a candidate observation in a situation which changed (and was recorded accordingly 

in the OSM). Results obtained from analysis with date specific OSM context suggest, however, that 

this is not a common problem. 

OSM history would, of course, provide the information necessary for identifying cases in which the 

OSM context changed. It would be possible, on this basis, to treat such cases differently from cases 

where no changes occurred, and to use the date-specific approach only on these. Difficulties may arise 

in discriminating cases with real-world changes reflected in OSM, from cases where just the OSM 

data changed (e.g., through addition of more tags). The former cases are the ones which should be 

treated with the date-specific approach, while the latter should certainly be placed in the context of the 

current OSM, avoiding difficulties such as a lack of completeness in older OSM data. These consider-

ations might propose an interesting avenue for future research for improving the OSM environments 

approach. 
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5.4 Estimating the Plausibility of Candidate Observations Based on 
Observed Communities and OSM Environments 

How can practical use be made of the approaches to plausibility estimation of casual citizen science 

observations of organisms presented in this work? Evaluation proved that for both similarity indices 

used, index values for plausible observations are usually higher than for implausible observations. 

Therefore, both approaches to plausibility estimation basically work. In this section, the step will be 

taken from looking at sets of observations and their distributions of similarity values, which was done 

to evaluate the approaches, towards looking at individual candidate observations and estimating their 

plausibility, which is the task the approaches are ultimately designed for. This is done by carefully 

discussing extent and limits of the approaches’ indicative power concerning a candidate case’s plausi-

bility, in light of the approaches’ functional properties and of evaluation results. This leads to general 

types of plausibility indications which may occur for certain candidate cases. These are then illustrated 

by looking at examples of target species and of individual candidate cases, taken from the evaluation 

results, which represent these case types. An approach to derive decision thresholds for plausible and 

implausible cases is also presented. 

5.4.1 General Considerations on Indicative Power and Candidate Case Types 

The observed communities approach and the OSM environments approach both estimate the plausibil-

ity of an observation by evaluating the match between the location of an observation and its species 

identification. They use two aspects of an observation. The first is the location, which determines the 

context of species observed around it, or of tags mapped around it. The second is the species identifi-

cation, which determines which context species or context tags are expected, according to the species’ 

observed community or OSM environment. In a case with a high level of similarity, the location of the 

candidate observation matches the species given by the observer. Its location is similar to places where 

the target species is usually observed, when the candidate observation’s species or tag context is con-

sidered. This makes the location of the candidate observation appear plausible in light of the given 

species. In a case with a low level of similarity, the location does not match the species identification. 

Its location is not similar to places where the target species is usually observed. This makes the loca-

tion of the candidate observation appear implausible in light of its species identification.  

Discussion of evaluation results revealed that there are species whose observed communities or OSM 

environments are similar, because these species are observed in the same locations. Therefore, ob-

served communities or OSM environments of target species observed in the same places tend to be 

similar. This finding is very important for how the observed communities approach and the OSM envi-

ronments approach can be used to estimate the plausibility of the location of an observation in light of 

its species. A high similarity value shows that the candidate observation’s location matches places 

where the target species is usually observed, but the candidate species might be any other species usu-

ally observed in the same places, or in places with similar species or tag context, and consequently 

having a similar observed community or OSM environment. An observation of one of these other spe-

cies in the same location as the candidate observation would be just as plausible. Obviously, certainty 

of species identification is of no small importance here. 

In a citizen science environment, certainty of species identification is determined by a number of fac-

tors. Of particular interest are species which can easily be mixed up with one another due to similar 

physical appearance, similar sound utterance, or otherwise similar features. Experience and training on 

the side of observers mitigates this problem, but casual citizen science observations of organisms are 

also provided by untrained and at least in part inexperienced observers. This fact was already used in 
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this work to synthesize implausible observations by swapping species identifications of real observa-

tions of species which are often mixed up due to physical similarity, but live in different habitats 

which should provide different species or tag contexts. For the current discussion, species are also 

important which are easily mixed up, but are observed in the same places for whatever reasons, and 

therefore have similar observed communities or OSM environments. In candidate cases which are 

plausible, these are the species which are the most likely species alternatives at a given location. A 

high similarity value makes the candidate location appear plausible, but does not allow for ruling out 

that the species could be mixed up with a different species usually observed in similar places, especial-

ly a physically similar species. However, it is also implausible in this case that the species actually 

observed was a physically similar species usually observed in locations which have a different context. 

In implausible cases, either the location might be incorrect, or the species might be erroneous, and 

then all other species with an observed community which is similar to the candidate species’ are also 

unlikely. It is, however, possible in these cases that the observation is in truth of a species which is 

physically similar to the species given in the candidate observation, but which is usually observed in 

different places. A test for this case could consist of calculating similarities between the candidate 

context at hand and the observed communities or OSM environment of the proper species. If a high 

similarity value would be found, it would point to a possible mix-up of these species.  

All of these considerations, of course, do not apply for species which are easily and clearly identifia-

ble, with no species physically similar enough for even an unexperienced observer to mix them up. 

Such species exist (examples will be discussed below) and produce cases where the species identifica-

tion of a candidate is certain to a high degree. Another factor making a species identification certain 

(also for more difficult species) is a very experienced observer. If the observed community approach 

or the OSM environments approach find a high level of similarity of candidate context and observed 

community or OSM environment with such a candidate case, both species and location are plausible. 

For low similarities, the location is implausible, while the species is plausible, and if there is an error, 

it is more likely on the side of the location. A gross mix-up of species cannot, of course, be ruled out 

either, but is unlikely. An experienced observer will also lead to a high degree of certainty in species 

identification in an observation, at least for the species or species groups in which the observer spe-

cializes. This includes observations of species which are hard to identify or easily mixed up with phys-

ically similar species. In all cases where a low similarity value makes the candidate location appear 

implausible, it is always possible that the candidate observation comes from a location with a context 

which was so far not represented in the data, and therefore appears unusual when compared to the 

existing observations available for the candidate species.  

Analog considerations apply for the reported location of an observation. The approaches to plausibility 

estimation discussed here can make a reported location appear plausible or implausible, but any simi-

lar location would result in a similar plausibility for an observation of the same species. This applies to 

observations with certain and uncertain species identification in the same way. Even if species identi-

fication is certain and context at the reported location matches the observed species’ observed com-

munity or OSM environment, all locations with a similar species or tag context are just as plausible. 

With implausible observations, there are of course a very large number of alternative locations, be-

cause many different context situations may result in equally low similarity index results. This leads to 

the question of certainty of location in an observation. ArtenFinder and iNaturalist, like many other 

web-portals for reporting observations of organisms, provide map viewers to locate an observation by 

clicking on the map. Various types of base maps and other geographic information are usually availa-

ble in these viewers. iNaturalist provides Google map and satellite images, while ArtenFinder has 

OpenStreetMap, aerial photographs, and also official topographic maps and relief. Uncertainty is 

therefore introduced by the variable ability of volunteers to correctly read such forms of geographic 
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information, and to correctly place their observations on them. This factor of uncertainty is similar in 

nature to volunteer uncertainty in species identification, depending very much on the individual abili-

ties of the volunteer. Also, when placing an observation on the map, observers can choose a scale by 

zooming in or out, thereby inherently selecting a level of precision in placing their observation. On a 

small scale, an observation will probably be placed accurately, but with relatively low precision in the 

correct area (e.g., in a certain part of a town, on a lake, or in a stretch of forest). On a larger scale, an 

observation may be placed much more precisely, e.g., in an isolated tree in which a bird was actually 

seen. In both ArtenFinder and iNaturalist, observers are free to choose the scale at which they place 

their observation in the map. This choice may or may not reflect the actual certainty of the observed 

position on the side of the observer. An observer may have a very precise recollection of the actual 

position of an observation, but may still use a small scale when actually submitting the observation, 

resulting in low precision. iNaturalist automatically generates an accuracy value depending on the 

chosen map scale, which can also be manually changed by the observer before submitting the observa-

tion. In iNaturalist also, an address search allows for placing an observation in a certain street address, 

introducing uncertainty of geocoding to accuracy, and uncertainty of the actual position used for an 

address in the geocoding process to precision. Both ArtenFinder and iNaturalist do not use user-

defined observation areas, an option which is available in some other platforms (e.g., naturgucker.de), 

and a factor reducing precision, but usually not accuracy. Errors or inaccuracies in the maps and other 

sources of geographic reference used in a map viewer will, of course, also directly result in errors of 

observation location. With apps for reporting observations by using mobile devices (also provided by 

ArtenFinder and iNaturalist), uncertainty of geographic location is mostly determined by the technical 

properties of the Global Positioning System (GPS) sensor in the device used, as well as by the usual 

factors for GPS accuracy, such as satellite constellation and shadowing effects through infrastructure 

and vegetation (e.g., Zandbergen & Barbeau 2011).  

Table 5.4.1: Considerations on plausibility of location and species identification for candidate cases. 
High similarity of candidate context and ob-

served community or OSM environment 

Low similarity of candidate context and ob-

served community or OSM environment 

Reported location matches species identification. 

 Reported location plausible for reported 
species. 

 Reported location equally plausible for 
any species with a similar observed 
community or OSM environment (espe-
cially relevant: physically similar spe-
cies).  

 Reported location implausible for any 
species with a different observed com-
munity or OSM environment (including 
physically similar species). 

 Any other location with matching species 
or tag context equally plausible. 

Location does not match species identification. 

 Reported location implausible for report-
ed species. 

 Reported location also implausible for 
any species with a similar observed 
community or OSM environment (in-
cluding physically similar species). 

 Large number of alternative locations 
equally implausible. 

Table 5.4.1 summarizes the considerations described here, for the two main cases of a plausible or an 

implausible candidate observation. The information provided by the observed communities approach 

or by the OSM environments approach to plausibility estimation of casual citizen science observations 

of organisms is limited. Especially with plausible observations, it is important to keep in mind that 

there are often alternative species and locations which would render similar plausibility estimations. 

An implausible case may basically represent either an error in species identification or in position. The 
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latter is more likely with species which are usually identified with high certainty, or it may represent a 

correct but unusual observation. These considerations are overlaid by the influences of observation 

density on the similarity measures used here, which were discussed in detail earlier. They introduce 

another set of factors to this discussion, which are rooted in the VGI nature of the data. All of these 

considerations are best examined and illustrated by using examples from the data use cases at hand, 

first on the level of species and their observed communities, and then also on the level of individual 

candidate observations.  

5.4.2 Observed Communities Examples: Illustrating Target Species and Candi-
date Cases 

Common Kingfisher is a case of a species from the ArtenFinder data use case which is easy to identi-

fy, with no physically similar species which could easily be mixed up with it, either observable in the 

same locations, or elsewhere in Rheinland-Pfalz. Simpson similarities between the Common Kingfish-

er’s observed community and those of all other species used in evaluation show that high Simpson 

similarities exist with species which share the Common Kingfisher’s habitat, and which are therefore 

observed in the same places. They are mostly waterfowl, and dragonflies and damselflies. 94% of 

species whose observed communities have a Simpson index value of 0.8 or higher with the Common 

Kingfisher’s belong to these two groups. Most of these also have relatively high Jaccard similarities, 

with some exceptions where observed communities are much larger than Common Kingfisher’s. Low 

Simpson similarities of 0.2 or lower are found between the Common Kingfisher’s observed communi-

ty and observed communities of target species which are usually observed in different habitats. All of 

them also have low Jaccard similarities of under 0.13. Many butterfly species are found here, as well 

as many birds not attached to waterbodies. These two groups make up ca. 98% of species whose ob-

served communities have a Simpson index value of 0.2 or lower with Common Kingfisher’s. Some 

observed communities of species which share the Common Kingfisher’s habitat but belong to different 

species groups exhibit medium Simpson similarities with the Common Kingfisher’s observed commu-

nity. Some dragonflies and damselflies can be counted among these cases, but also species with un-

specific habitat preferences of other species groups can be found among these. There are also some 

cases which form exceptions from the rule. For instance, the 119-species observed community of Eu-

ropean Hedgehog (Erinaceus europaeus) has a Simpson index value of 1.0 with the Common King-

fisher’s 15-species observed community, although it is not especially found close to the latter’s typical 

habitats. The large size of the European Hedgehog’s observed community might be a reason for the 

fact that it completely covers the Common Kingfisher’s much smaller observed community. However, 

although 87 species have inter-observed-community Simpson similarity values of 0.2 or lower with 

Common Kingfisher, it is hard to find a species among them which would clearly be expected to ex-

hibit a higher similarity, so that the data used in this study do not provide an exception of this kind. 

Next, we will look at some individual candidate cases of Common Kingfisher from the AF_A set. A 

real observation case with relatively high similarity values both for the Simpson index (at 0.87) and 

the Jaccard index (at 0.30) is presented by an observation (ID 54271696, observed on 2016-11-20) 

from a lake close to Neuburg on the Rhine in southeastern Rheinland-Pfalz. Observation density at this 

location is rather low: the candidate context has just 42 species from 247 observations within the 1,000 

m search radius (the AF_A means for these values are 108.2 species and 1,225.4 observations). How-

ever, the candidate context still covers 13 species in the observed community: most species usually 

found around a Common Kingfisher observation were also observed around this candidate case. The 

similarity values thus both allow for evaluating this observation’s location as plausible by the observed 

communities approach. As the candidate context is relatively small, the high Simpson index value is 

probably not boosted by candidate context size. The Jaccard index also reaches a relatively high value 
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here due to the large intersection of candidate context and observed community, and because there are 

relatively few species in the candidate context which do not match the observed community. The spe-

cies is easy to identify. There are other species with similar observed communities, but there is small 

danger of a mix-up even for unexperienced observers. So, in this case, place and species identification 

are plausible, and plausibility estimation by the observed communities approach supports the actual 

quality assurance decision made by the ArtenFinder experts. Of course, considerations concerning 

uncertainty of location apply: a small shift in the location which would not change the observed candi-

date context would also not change the resulting plausibility estimation, and other, more remote loca-

tions with similar context would also render similar plausibility estimations. 

An example of a real observation which is implausible by the observed communities approach (alt-

hough accepted by ArtenFinder experts) is found close to the village of Frankenstein, within the large 

forest area of the Pfälzerwald, but again on a lake (ID 54266476, observed on 2016-10-13). With a 

Simpson index value of 0.20 and a Jaccard index value of 0.03 both index values are low, indicating 

low plausibility of the location. Observation density around this location is also not high (with 260 

observations within the search radius), but a higher diversity within these observations renders 102 

species in the candidate context, which is about average for the AF_A set. However, only three of the 

species usually observed close to a Common Kingfisher observation are present in this context, mak-

ing its location rather untypical in light of earlier observations of this species. Both similarity indices 

reflect this by giving low values. As Common Kingfishers are easy to identify, the species identifica-

tion in this case is probably correct. There are various reasons for a location to appear implausible in 

this case. The location could have been recorded incorrectly. However, as the case at hand was accept-

ed by ArtenFinder experts, it is more likely that it simply presents an unusual context which does not 

occur often enough in previous observation data to critically influence the composition of Common 

Kingfisher’s observed community. For the same reason, the case is very properly evaluated as implau-

sible by the observed communities approach, and thus identified as unusual. Similar plausibility esti-

mations would result in many other possible locations with contexts equally dissimilar to Common 

Kingfisher’s observed community. 

So far, examples were discussed where both Simpson and Jaccard indices show accordant indications 

of plausibility, but this is not always the case. Let’s look at another Common Kingfisher observation 

(ID 54269945, observed on 2016-10-31) on a lake close to Offenbach on the Queich, again in south-

western Rheinland-Pfalz. In this case, observation density is high, with 2,425 observations within the 

search radius, giving the candidate context a very high number of 308 species. They include all 15 

species usually observed with Common Kingfisher. Simpson index value for this observation is there-

fore 1.0, the maximum possible value. However, Jaccard index is at 0.05 for this case, a low value (if 

not extremely low, for Jaccard index standards). Plausibility estimation is therefore divergent for the 

two similarity indices used. The Simpson index attaches a maximum plausibility to the location of this 

observation by the observed communities approach. The Jaccard index makes the location appear im-

plausible. In this case, the high number of context observations (and consequently, high number of 

context species) makes a high intersection of candidate context and observed community more proba-

ble, giving this factor some weight in producing the high Simpson index value. For the Jaccard index 

value, considering in its calculation the very large number of species present in the candidate context 

which do not match the observed community, the same factor leads to a reduction of the index value. 

This seems to present a contradiction to the findings in section 5.1, where no negative correlation be-

tween Jaccard index values and candidate context size was found (but a moderate positive correlation). 

However, the Jaccard index is sensitive to the difference in size between the two lists compared, so 

that in the case at hand, the coincidence of a rather small observed community with a very large can-

didate context necessarily leads to a low Jaccard index value.  
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The above example of Common Kingfisher is of a species which cannot easily be mixed up with other 

species. Species identification can therefore be considered to be certain in most cases. If the observed 

communities approach to plausibility estimation indicates a high plausibility of a candidate’s location, 

the combination of species and location appears plausible. With a contrarious plausibility indication, 

the location appears implausible while the species identification can still be regarded as certain. Now, 

what would be the interpretation of a plausibility indication with the observed community approach 

for candidate observations with uncertain species identification? Table 5.4.1 describes the conse-

quences in general terms. Let’s make an ArtenFinder example of such a case with the dragonfly spe-

cies Ruddy Darter (Sympetrum sanguineum), see Figure 5.4.1. Three more species of the genus Sym-

petrum occur in Rheinland-Pfalz and produced valid observed communities in the evaluation of the 

observed communities approach: Red-veined Darter (Sympetrum fonscolombii), Common Darter 

(Sympetrum striolatum) and Vagrant Darter (Sympetrum vulgatum). These species are all similar in 

appearance to Rudy Darter. Speaking of similar appearance, it is important to stress that in a citizen 

science environment this concept has to be used in a wider sense than it would be used for professional 

experts. Of course, experienced citizen observers often develop skills in species identification which 

are on a professional level. However, a citizen science project will always have a certain number of 

less skilled observers due to a lack of experience or other factors. Also, in nature there is always a 

certain degree of variability in the appearance of individuals of a species, making it sometimes diffi-

cult even for professionals to distinguish similar species with certainty. Different Sympetrum species 

have a different phenology, which sometimes allows for excluding species because they usually fly 

earlier or later in the year, but seasons overlap. 

a) Ruddy Darter (Sympetrum sanguineum) 

 

b) Red-veined Darter (Sympetrum fonscolombii) 

 
c) Common Darter (Sympetrum striolatum) 

 

d) Vagrant Darter (Sympetrum vulgatum) 

 
Figure 5.4.1: Four Sympetrum species occurring in Rheinland-Pfalz. (All males; photos: C. Jacobs). 

Observed communities of Ruddy Darter and the other Sympetrum species are similar, with Simpson 

similarity values between 0.78 to 0.84, and Jaccard similarities ranging from 0.52 to 0.68. This shows 

that all of these Sympetrum species are usually observed in places with a similar observation context. 

They share a preference for standing or only slowly flowing water bodies, although there are differ-

ences in vegetation structure in their preferred habitats. High similarities of Ruddy Darter’s observed 

community can also be found with observed communities of many other dragonfly and damselfly spe-
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cies (e.g. a Simpson index value of 1.0 with Southern Hawker), and with those of other species living 

in or close to water, such as Common Kingfisher, Grass Snake, and some amphibian species. All in 

all, ca. 77% of species with a Simpson index value of 0.8 or higher match Ruddy Darter’s habitat pref-

erence, at least to some degree. Exceptions exist, such as high Simpson similarity with Middle Spotted 

Woodpecker’s observed community, which is somewhat surprising, but might be explained by the 

latter’s preference (among others) of riparian forests rich in tree species with coarse bark58. However, 

Jaccard similarity is not high in this case, at 0.19, because Middle Spotted Woodpecker’s observed 

community is rather small, with just 13 species. Ruddy Darter’s observed community is relatively 

large, with 55 species, and this results in a relatively low Jaccard index value (although not extremely 

low, because 11 species are part of both observed communities). Other cases of medium to low Jac-

card similarity among high Simpson similarity cases occur for the same reasons. Ruddy Darter’s ob-

served community is rather different from species not associated to waterbodies, and especially of 

other species groups, such as many butterflies and birds. Among the 12 species whose observed com-

munities have a Simpson index value of 0.2 or lower with Ruddy Darter’s, only Western Marsh Harri-

er (Circus aeruginosus) can be expected to be observed often close to certain kinds of waterbodies. 

For reasons explained above, Jaccard similarity values are low for these cases, too. The current exam-

ple species’ observed community has a larger size of 55 species (above average in the AF_A set, and 

among all valid observed communities) than Common Kingfisher’s 15-species observed community. 

Simpson similarities of Ruddy Darter’s observed community to other observed communities are there-

fore higher, on average, than Common Kingfisher’s, because larger intersections with other observed 

communities are more probable. 

For similarity values in individual observations of Ruddy Darter, the same mechanics take effect 

which were already discussed in detail for Common Kingfisher observation examples above take ef-

fect. One AF_A example observation (ID 54251632, observed on 2016-08-14) from the fields near the 

village of Gommersheim in southeastern Rheinland-Pfalz has high similarity values (Simpson index 

0.85, Jaccard index 0.40) with a candidate context of 110 species (about average in the AF_A set), 

covering 47 of the 55 species in the observed community. The observed communities approach there-

fore indicates a plausible location, which matches typical previous observations of Ruddy Darter. The 

observation is not located directly on a water body, but there are several ponds within the search radius 

of 1,000 m (the closest at a distance of ca. 320 m). Thus, although dragonflies have a certain mobility 

and will also be observed away from their reproduction habitats (as in the current case), the observed 

community approach evaluated the location at hand as plausible. However, would the species identifi-

cation for this observation have been one of the other Sympetrum species discussed above, plausibility 

estimation of the observation’s location would not have been much different. For instance, a Red-

veined Darter observation in the same place would have reached an only slightly lower Simpson index 

value of 0.79 and an identical Jaccard index value of 0.40. Index values for a Common Darter observa-

tion would be at 0.78 and a somewhat lower 0.33, respectively. Vagrant Darter would have resulted in 

a lower Simpson index value of 0.60 and a Jaccard index value of 0.33. In this example case, there-

fore, the observed communities approach gives us a high plausibility of the location for a Ruddy Dart-

er observation, but it cannot be ruled out, on just these grounds, that the species might have been 

mixed up with one of the other Sympetrum species, especially Red-veined Darter or Common Darter. 

Further evidence, such as a good photo proof, or high experience on the side of the observer in identi-

fying dragonflies, is needed here to support the species identification, and was probably present, as the 

observation was approved by ArtenFinder experts. As already stated in Table 5.4.1, the observed 

communities plausibility indication in this case makes mix-ups with species with different observed 

                                                      
58 http://arteninfo.net/elearning/libellen/speciesportrait/310, 2018-05-06 
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communities implausible, including physically similar species (not present in the dataset in this case, 

but Vagrant Darter presenting a less plausible case).  

An AF_A observation of Ruddy Darter with an untypical and therefore implausible location by the 

observed communities approach can be found east of Kaiserslautern in south-central Rheinland-Pfalz 

(ID 54257534, observed on 2016-08-30). Its candidate context is of average size (107 species), but 

covers only eight of the 55 species in Ruddy Darter’s observed community. Although the candidate 

observation itself is situated on a pond, most observations in its 1,000 m spatial context area are locat-

ed in other habitats. Consequently, both the Simpson index (at 0.15) and the Jaccard index (at 0.05) 

indicate low plausibility of the location. For reasons discussed above, this result renders the location 

also implausible for other Sympetrum species with observed communities similar to Rudy Darter’s. 

Plausibility indication for the location would probably have been alike if the observer would have 

identified the species as one of these in this case. Red-veined Darter would have resulted in almost 

identical index values of 0.15 and 0.06, as well as Common Darter with 0.16 and 0.5; Vagrant Darter 

would have reached slightly higher index values at 0.22 and 0.10. Again, other evidence was obvious-

ly present which led the expert in charge of this species and area to accept the observation as correct, a 

decision which would not have been supported by the observed communities approach to plausibility 

estimation. 

Table 5.4.2: Properties of example candidate observations discussed in section 5.4.2. 
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54271696 2016-11-20 

Common Kingfisher  

(Alcedo atthis) 
15 42 13 0.87 0.30 

54266476 2016-10-13 
Common Kingfisher  

(Alcedo atthis) 
15 102 3 0.20 0.03 

54269945 2016-10-31 
Common Kingfisher  

(Alcedo atthis) 
15 308 15 1.00 0.05 

54251632 2016-08-14 
Ruddy Darter  

(Sympetrum sanguineum) 
55 110 47 0.85 0.40 

54257534 2016-08-30 
Ruddy Darter  

(Sympetrum sanguineum) 
55 107 8 0.15 0.05 

In this discussion, real ArtenFinder observations were used. Table 5.4.2 lists their relevant properties. 

Analog examples could be found in iNaturalist, but the general mechanisms laid out in Table 5.4.1 and 

illustrated by the above examples are the same. These examples, all coming from the AF_A set, that 

is, real observations from the year 2016 which were accepted as correct by experts in the project’s 

validation process, illustrate that similarity values range from low to high values in this set. Clearly, 

the observed communities approach indicates low plausibility in light of their species identification 

and observation context for locations of many approved observations. It is also possible that evalua-

tion of the approach with ArtenFinder data found some cases which were erroneously approved. The 

same findings are true for the set of observations which were rejected by experts in the ArtenFinder 

project (AF_R): some of these (although a smaller portion than in AF_A) appear plausible in observed 
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communities approach evaluation. In both cases, there are many different reasons for acceptance or 

rejection, as explained in section 2.1.1.The above examples illustrate that the observed communities 

approach to plausibility estimation can support such decisions, but that its indications are not always in 

accordance with actual decisions. This finding is furher discussed below in section 5.4.4, including an 

attempt at quantifying it. The discussion above takes great care of explaining the exact extent of the 

observed communities approach’s indicative power and its inherent limits.  

5.4.3 OSM Environments Examples: Illustrating Target Species and Candidate 
Cases 

While the general mechanics taking effect in estimating the plausibility of a candidate observation 

with OSM environments are the same as with observed communities, it became clear from the results 

discussed above that relations between species concerning similarity of their OSM environments are 

different. Observed communities are similar among species with similar habitat preferences, often 

from the same species group. This is no longer true with OSM environments. The following examples 

were chosen to illustrate this, and to illustrate the consequences for plausibility estimation of individu-

al candidate observations with OSM environments. 

Eurasian Moorhen was portrayed above as a species which can be expected to be predominantly ob-

served on ponds, small lakes or other stagnant or slowly flowing water bodies. It is also a species 

which is rather easy to identify. Even the somewhat similar Eurasian Coot (Fulica atra) is easily dis-

tinguishable as an adult bird by distinct coloring (Rößner et al. 2013) for untrained observers. The 

above discussion also revealed that Eurasian Moorhen’s Rheinland-Pfalz OSM environment does not 

feature tags which point to its habitat preference, which has been proven to be typical for OSM envi-

ronments. Consequently, similarities with other OSM environments include species from all species 

groups and with many different properties. Only ca. 22% of the species whose OSM environments 

have a Simpson index value of 0.8 or higher with Eurasian Moorhen are other waterfowl, dragonflies 

or damselflies, or other species which can also be expected to be predominantly observed close to 

ponds etc. Among species with a relatively high Jaccard similarity of 0.4 or higher are ca. 28% of such 

species, a comparable value. However, all species with high Simpson or Jaccard index values between 

their OSM environment and the Eurasian Moorhen’s are often observed in places with an OSM con-

text which is similar to the one often found around observations of the Eurasian Moorhen. Else, their 

OSM environments would not be similar to the Eurasian Moorhen’s. In contrast to the observed com-

munity approach, however, high or low similarity of OSM environments is obviously not critically 

influenced by biological or ecological species properties such as habitat preference, but simply by the 

fact that species are predominantly observed in OSM context situations which are similar. In some 

cases, high index values (especially of the Simpson index) may be boosted by a large OSM environ-

ment size, because Eurasian Moorhen’s OSM environment, with 15 tags, is relatively small. OSM 

environments with high Simpson similarities with Common Moorhen’s have a mean of 34.5 tags, 

which is above the average of 19.5 for all ArtenFinder OSM environments. For OSM environments 

with Simpson similarities of 0.2 and lower with Common Moorhen’s this average is just 13.9%. For 

OSM environments with high (0.4 or higher) or low (0.125 or lower) Jaccard index values, the corre-

sponding mean numbers of tags are both much closer to average, at 21.2 tags (for high similarity OSM 

environments) and 17.2 tags (for low similarity OSM environments). These numbers support the find-

ing discussed earlier, that Simpson similarity is biased by OSM information density in the OSM envi-

ronments approach to plausibility estimation of casual citizen science observations of organisms. OSM 

environments of other species have high or low Simpson similarities to Eurasian Moorhen’s OSM 

environment at least in part because they are predominantly large or small. With Jaccard similarity, 

OSM environment size is much less influential. 
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Some examples of individual candidate observations are now used to illustrate how the OSM envi-

ronments approach works as an indicator of plausibility. The AF_A set of accepted ArtenFinder ob-

servations from the year 2016 has Eurasian Moorhen candidate cases which have relatively high index 

values both for the Simpson and the Jaccard index. One of these (ID 54274304, observed on 2016-12-

18) can be found on a small lake close to the village of Neuburg am Rhein which is situated on the 

river Rhine in the extreme southeast of Rheinland-Pfalz. The location has an average-size OSM candi-

date context of 36 tags, which covers 13 of the Eurasian moorhen’s 15 OSM environment tags, result-

ing in a Simpson index value of 0.87 and a Jaccard index value of 0.34. The location therefore appears 

plausible for a Eurasian Moorhen observation by the OSM environments approach to plausibility es-

timation, supporting the positive verification decision made by the ArtenFinder experts who accepted 

this observation as probably correct.  

A different situation is presented by a Eurasian Moorhen observation (ID 54273201, observed on 

2016-12-05) on a pond in Kaiserslautern’s “Volkspark”, a public park in a city in south-central Rhein-

land-Pfalz. Here, the location’s OSM context is much larger: 72 different tags are present in its neigh-

borhood, covering all 15 tags in Eurasian Moorhen’s OSM environment. Consequently, the Simpson 

index value is 1.0. However, the Jaccard index reaches only a value of 0.21. The high OSM infor-

mation density provided by the urban setting of the observation certainly plays a role in creating a very 

high Simpson similarity, while the Jaccard index, taking the large number of candidate context tags 

into account which are not present in the species’ OSM environment, does not necessarily justify eval-

uation of the observation as plausible, although ArtenFinder experts accepted this observation as cor-

rect, which seems well justified by the location.  

A third instructive example of a Eurasian Moorhen observation, this time with low index values of 

0.15 (Simpson index) and 0.08 (Jaccard index) and therefore appearing implausible (but again taken 

from the AF_A set of accepted ArtenFinder observations), can be found ca. 18 km southwest of Kai-

serslautern in a rural setting away from settled areas. The outskirts of the closest village, Waldfisch-

bach-Burgalben, are ca. one km away, placing the village mostly outside the 1,000 m radius employed 

in candidate OSM context extraction. The observation (ID 54223799, observed on 2016-05-21) is 

situated in a pond which is part of a golf course. This location’s OSM context has only 13 tags, cover-

ing just two of the tags in Eurasian Moorhen’s OSM environment, leading to low similarity values. 

This candidate observation therefore appears unusual by its OSM context. It is also unusual in that the 

candidate context, with 13 tags, is smaller than the OSM environment involved, and therefore used as 

the denominator of the Simpson index in this case, while in most cases the candidate context exceeds 

the target species’ OSM environment. 

These examples highlight the effect of spatial properties of OSM data, with their contrast between 

rural and urban areas, on the way the OSM environments approach to plausibility estimations works. 

High OSM information density in urban settings lead to observations being evaluated as plausible (at 

least by the Simpson index value), while rural settings with low numbers of tags rather produce low 

plausibility results. Of course, in the examples of such settings used above, the fact remains that the 

intersection between candidate context and the target species’ OSM environment simply was high in 

the urban setting and low in the rural one, which is not necessarily the case in all candidate cases. De-

spite its large size of 72 tags, the urban OSM context cited above might not have covered Eurasian 

Moorhen’s OSM environment to such a high extent, and the mere 13 tags found in the rural setting 

example used above might have covered a much larger portion of Eurasian Moorhen’s OSM environ-

ment. However, Eurasian Moorhen does not present such examples in the data used.  

Still, examples exist. An observation (ID 54238227, 2016-07-12) of Grayling taken from the AF_A set 

features 16 surrounding tags all of which cover the target species’ 11-tags OSM environment, produc-
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ing high similarity values of 1.0 (Simpson index) and 0.69 (Jaccard index). The candidate observation 

comes from a former military area within a large forested region (the Pfälzerwald) in southern Rhein-

land-Pfalz, with 23 of the 31 prior observations of the species (from which the OSM environment was 

extracted) nearby. The OSM environments approach identified the location as plausible because the 

candidate observation’s OSM context necessarily shares many tags with these prior observations. 

An example observation (ID 54033011, 2014-06-17) of Five-spot Burnet, a species of moth already 

presented above, taken from the ArtenFinder candidates set AF_R (set of rejected observations), fea-

tures a 58 tags candidate observation OSM context, which covers only one of the 11 tags in this target 

species’ OSM environment. Consequently, the OSM environments approach evaluates this candidate 

observation as implausible, with a Simpson index value of 0.09 and a Jaccard index value of 0.01. The 

candidate observation is situated at the edge of a settled area right next to a highway. Prior observa-

tions (which produced the species’ OSM environment) are dispersed over Rheinland-Pfalz, and are 

situated predominantly in rural, mostly forested areas with meadows. Therefore, the OSM environ-

ments approach confirms the ArtenFinder experts’ decision of rejecting this candidate observation. 

The genus Zygaena has many species occurring in Rheinland-Pfalz, which are physically very similar 

among one another59. A mix-up with a different Zygaena species is therefore probable in this case. 

Table 5.4.3: Properties of example candidate observations discussed in section 5.4.3. 
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54274304 2016-12-18 
Eurasian Moorhen  

(Gallinula chloropus) 
15 36 13 0.87 0.34 

54273201 2016-12-05 
Eurasian Moorhen  

(Gallinula chloropus) 
15 72 15 1.00 0.21 

54223799 2016-05-21 
Eurasian Moorhen  

(Gallinula chloropus) 
15 13 2 0.15 0.08 

54238227 2016-07-12 
Grayling  

(Hipparchia semele) 
11 16 11 1.00 0.69 

54033011 2014-06-17 
Five-spot Burnet (Zygaena 

trifolii) 
11 58 1 0.09 0.01 

In all of the above examples, the usual considerations concerning certainty of species identification 

and location apply in the same way which was already discussed for the candidate observation exam-

ples illustrating the observed communities approach to plausibility estimation. They are described in 

general terms in Table 5.4.1. In any candidate case, all species with a similar OSM environment would 

lead to similar plausibility estimations in the same location, which is especially relevant if there are 

physically similar species with this property. A mix-up with a physically similar species which has a 

different OSM environment is, however, unlikely in such a case. Any candidate observation with a 

plausible location would be estimated as equally plausible in a different location with a similar OSM 

context. Table 5.4.3 summarizes the example observations’ properties. 

                                                      
59 https://arteninfo.net/elearning/nachtfalter/select_species#latZ, last accessed on 2018-08-24 
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5.4.4 Deriving Decision Thresholds for Plausible and Implausible Cases 

The examples discussed above present cases with rather high or rather low index values, clearly indi-

cating plausible or implausible cases. But when exactly do Simpson or Jaccard index values indicate a 

plausible case, and when do they indicate implausibility? In quality assurance regimes where a deci-

sion between approval and flagging as unusual is used (e.g., in the ArtenFinder project), some way of 

defining decision thresholds is needed. The kernel density estimations derived from the distributions 

of index values used in evaluation may provide some guidance for defining decision thresholds, which 

is demonstrated here using similarity values from the observed communities approach. 

Quantiles of probabilities can be derived from kernel density estimations by integrating the area under 

the density graphs. Let’s look at the Simpson index first. For instance, 90% of synthetic plausible Ar-

tenFinder candidate observations (AF_SP) have Simpson index values of 0.81 or higher. Therefore, an 

observation could be expected to belong to the set of plausible observations in light of its observed 

community, if it has a Simpson index value of 0.81 or higher, with 90% certainty. With the AF_A set 

as a benchmark, the critical index value would be much lower, at 0.3. However, it was already dis-

cussed that AF_A has many observations which appear implausible by the observed communities ap-

proach, because the decision for acceptance is based also on other criteria. Therefore, this set is un-

suitable for the purpose of defining a decision threshold for observations which are plausible only by 

the observed communities criterion. For the decision threshold of observations’ locations to be consid-

ered implausible on the same level of certainty, several possibilities are to be considered. In the syn-

thetic set of implausible observations AF_SI3, 90% of observations have a Simpson index value of 

0.36 or less. An observation could be expected to belong to the set of implausible observations in light 

of its observed community, if it has a Simpson index value of less than 0.36, with 90% certainty. Other 

sets suggest other decision thresholds, with a maximum at 0.91 when real rejected observations 

(AF_R) are used, see Figure 5.4.2. Issues with the AF_R and AF_SI1 sets have already been dis-

cussed, rendering their results useless for these considerations. The critical Simpson index value of 

0.54 for the AF_SI2 set is produced with synthetic candidate observations with spatial properties (con-

cerning observation density around them) comparable to real observation data (other than AF_SI3 

candidates, which are, on average, situated in locations with lower observation density) and therefore 

presents a realistic alternative. Between the upper and lower thresholds, there is a range of Simpson 

index values in which a decision is not possible, on the given level of certainty. Thresholds derived in 

this way for ArtenFinder Jaccard index values are, of course, much lower, but the approach of finding 

them can be applied to this index in the same way (results see Figure 5.4.2). iNaturalist data render 

comparable results (see Figure 5.4.3) with a larger difference between iNat_SP and iNat_SI2/_SI3 for 

the Simpson index, and overall lower thresholds for the Jaccard index. 
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a) ArtenFinder, Simpson index b) ArtenFinder, Jaccard index  

 
Figure 5.4.2: ArtenFinder, Kernel Density Estimations for Simpson and Jaccard Index Values, with 
10% (AF_A, AF_SP) and 90% (AF_R, AF_SI1, AF_SI2, AF_SI3) probability quantiles. 
 

a) iNaturalist, Simpson index b) iNaturalist, Jaccard index  

 
Figure 5.4.3: iNaturalist, Kernel Density Estimations for Simpson and Jaccard Index Values, with 
10% (iNat_A) and 90% (iNat_SI1, iNat_SI2, iNat_SI3) probability quantiles.  

What if this technique of finding critical index values for finding plausible or implausible cases would 

have been applied to the real approved or rejected observations in the data use cases employed in this 

work? In how many candidate cases would it have supported or contradicted the actual decision made 

by the experts? The discussion of example candidate observations in section 5.4.2 already revealed 

that plausibility estimations with the observed communities approach do not always confirm actual 

quality assurance decisions. The above considerations on similarity value thresholds for plausible or 

implausible observations allow for attempting to quantify this finding. Table 5.4.4 shows results for 

the _SP and _SI2 thresholds and the parameters used above. 35.0% of accepted ArtenFinder cases 

from 2016 (AF_A) had Simpson index values of 0.81 and higher. In these cases, the observed com-
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munities approach supports the actual quality assurance decision of accepting these candidate observa-

tions as correct, because their locations appear plausible. However, 33.3% of AF_A candidates with 

Simpson index values at or below 0.54 have implausible locations by the observed communities crite-

rion (if the critical index value rendered by the AF_SI2 set is used). About half of the rejected Arten-

Finder candidates (AF_R) are evaluated as implausible (47.5% of candidates) with Simpson index 

values at or below 0.54. A much lower portion of just 19.9% of these cases is evaluated as plausible by 

the observed communities criterion, with a Simpson index above 0.81. Jaccard index results differ in 

that less accepted ArtenFinder candidates are evaluated as plausible (22.1%) while more appear im-

plausible (43.0%). Rejected ArtenFinder candidates show the same effect: more than half of them 

(55.2%) have Jaccard index values which make them appear implausible and only very few (12.7%) 

appear plausible. With approved (research grade) iNaturalist candidates (iNat_A), findings are quite 

similar with both Simpson and Jaccard index values (see Table 5.4.4). Portions of candidates that are 

evaluated as plausible or implausible are rather lower than with ArtenFinder data. A set of actually 

rejected candidate observations does not exist in the iNaturalist data use case (see section 3.3.2). 

Table 5.4.4: Portions of candidate observations evaluated as plausible or implausible, using critical 
index values. 

ArtenFinder Simpson index Jaccard Index iNaturalist Simpson index Jaccard Index 

 ≥ 0.81 ≤ 0.54 ≥ 0.28 ≤ 0.15  ≥ 0.88 ≤ 0.44 ≥ 0.23 ≤ 0.08 

AF_A 35.0% 33.3% 22.1% 43.0% iNat_A 22.9% 34.5% 18.2% 37.0% 

AF_R 19.9% 47.5% 12.7% 55.2% - - - - - 

These findings show that the observed communities approach is rather conservative when it comes to 

identifying implausible observations, at least with the parameter settings used in this discussion. Many 

candidate observations that were actually approved would have been evaluated as implausible by this 

indicator. This is a benefit in the sense that the probability to miss an erroneous observation becomes 

smaller. However, it is also a disadvantage because it raises the number of candidate observations that 

appear implausible and have to be checked. This problem is amplified by the fact that in practice, the 

actual portion of erroneous reports in all submitted observations is quite small. Domain experts usually 

give overall estimations of under 10% of erroneous observations submitted to a citizen science project 

collecting casual observations of organisms. However, in quality assurance regimes such as that of 

ArtenFinder each and every observation has to be checked by experts so far. Using a technique such as 

the observed communities approach to flag one third to half of the candidate observations and check 

these, while one fifth to one third of the candidate observations almost certainly do not have to be 

checked, is a great advantage in terms of absolute observation numbers, and thus in terms of work load 

for experts who do the checking. Of course, it is also true that only a part of all candidate observations 

can be evaluated at all (for various methodological reasons, and depending on parameter settings, see 

chapter 4). It is also very important to stress here again that the observed communities indicator evalu-

ates only one aspect of plausibility, which is a candidate observation’s location in light of its species 

ID and surrounding observations. Actual quality assurance decisions such as those made in ArtenFind-

er are based on many more criteria, some even not related to plausibility (see section 2.1), so that a 

certain degree of mismatch between actual approval and rejection of observations on the one hand, and 

plausibility estimation results with the observed communities approach on the other hand, is to be 

expected. 

 



 

6 Summary, Conclusions and Future Research 

6.1 Summary and Conclusions 

This thesis set out to answer a number of research questions. To do so, it explored novel approaches to 

quality assessment of casual citizen science observations of organisms based on geographic context 

and plausibility. This context was gained either intrinsically from the stock of observations available 

in citizen science projects, or extrinsically from OSM, a VGI data source providing a heterogeneous, 

but often very detailed representation of the environment. The former approach casts geographic con-

text into observed communities which mirror a target species’ typical observation context within a 

citizen science dataset of casual observations of various organisms. The latter casts the VGI context 

provided by OSM into a target species’ OSM environment, holding elements which are frequently 

mapped in places where the target species is observed. Both approaches were evaluated and thorough-

ly examined with two data use cases of casual citizen science observations. Evaluation proved that 

both approaches are indeed useful for plausibility assessment of casual citizen science observations of 

organisms, but that they also present a number of difficulties. Detailed examination and discussions 

provided insights into the approaches’ behavior and revealed the extent and limits of their indicative 

power. The most important findings for each research question can be summarized as follows:  

1. Principle research questions: 

a) How can geographic context be used for intrinsic assessment of the plausibility of 

casual citizen science observations of organisms? 

a1) How can casual observations be turned into an intrinsic source of geographic context? 

Observed communities propose a way of using casual observations of organisms as an in-

trinsic source of geographic context. An observed community of a target species repre-

sents a typical observation situation of that target species within the respectice dataset of 

observation data. It is produced by extracting all species frequently observed in close spa-

tial association to available approved observations of the target species, and therefor car-

ries characteristics caused both by natural species distributions and by VGI-related influ-

ences on the observation data used. In considering all available context observations re-

gardless of species, the approach uses the full context potential of a multi-species dataset. 

Context is therefore grounded on a broad basis of observations of different species. 

a2) How can this intrinsic context information be used to estimate plausibility of a candi-

date observation? 

Similarity indices were successfully used in this work to measure how well the geographic 

context of a candidate observation fits the observed community of the species which was 

reported in that candidate observation. This work compared results with two similarity in-

dices, the Simpson and the Jaccard index. These indices are based on the rate of species 

which both the observed community and the candidate context have in common. Evalua-

tion was able to show that contexts of plausible candidate observations usually have high-

er similarity values with their observed communities, than have contexts of implausible 

observations. Similarity values can therefore be used to estimate plausibility of a candi-

date observation. In this way, the approach is able to show whether an observation comes 

from a typical location, or from an unusual location, considering the species identification 
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given by the observer. As no external data are used in this approach, it is completely in-

trinsic. 

b) How can extrinsic VGI data be used for assessing the plausibility of casual citizen 

science observations of organisms? 

b1) How can OSM data be used as an extrinsic source of geographic context? 

OSM environments describe the typical geographic context of a target species in terms of 

OSM tags frequently found in close spatial proximity to observations of that target spe-

cies. In a procedure which is analogous to the extraction of observed communities, an 

OSM environment of a target species is produced by collecting all tags which are fre-

quently found in close spatial association with approved observations of that target spe-

cies. OSM data are an extrinsic source of geographic VGI context.  

b2) How can this extrinsic context information be used to estimate plausibility of a candi-

date observation? 

The same similarity indices as used in the observed communities approach were evaluated 

and proved basically successful in serving as plausibility indicators with OSM environ-

ments as well. This approach is able to evaluate candidate observations which did not pro-

vide valid cases in the observed communities approach, because the extrinsic geographic 

context of OSM provides context in places where observation data do not. However, using 

this extrinsic source of geographic context may lead to spatial bias in plausibility estima-

tion caused by spatially variable information density in OSM. Also, evaluation of the ap-

proach showed differences between sets of plausible or implausible candidate observa-

tions to be smaller than with the observed communities approach. Specifically, similarity 

values of implausible observations are generally higher. 

 

2. In-depth research questions: 

a) What are the effects of the spatial properties of geographic context data on plausi-

bility estimation? 

Both casual citizen science observations of organisms and OSM data are VGI. Such data 

are spatially heterogeneous, with spatially variable density of context observations, or of 

OSM information density. Both higher context observation density and higher OSM in-

formation density may lead to higher plausibility of candidate observations, especially 

with the Simpson index. In the intrinsic observed communities approach, this effect can be 

regarded as a legitimate contribution of the VGI nature of the data collection process to 

plausibility estimation, because a candidate observation from a location with higher ob-

servation intensity is indeed more plausible. In the extrinsic OSM environments approach, 

however, a higher OSM information density at a location does not justify a higher plausi-

bility of a candidate observation, because mapping of OSM data and collection of species 

observation data are not connected in any way.  

b) How do species properties affect results? 

Observed communities usually exhibit, in their species composition, distinct characteris-

tics governed by properties of their target species, especially preference of certain habitats. 
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OSM environments rarely do so, but are rather shaped in their tag composition by general 

properties of the thematic structure of the underlying OSM data, with generally frequent 

tags also dominating in OSM environments, regardless of the ecological features of the 

target species. Results with both approaches are also influenced by more general VGI-

related factors: datasets of casual citizen science observations are always biased towards 

certain popular species groups, towards species which can easily be photographed, etc. 

These effects also determine to a large degree which species can be evaluated by the ap-

proaches proposed here. 

c) How do changes to parameters and methodological modifications affect results? 

Both approaches to plausibility estimation of casual citizen science observations proposed 

in this work have a number of parameters, such as the size of the search radius for relevant 

geographic context, or frequency parameters for associations of species or tags, and for 

identifying nonspecific species or tags. Effects of parameter changes were examined in 

detail for the observed communities approach. The approach was found to basically keep 

its ability to distinguish between plausible and implausible observations with many differ-

ent parameter settings. However, effectiveness, in terms of numbers of species and candi-

date observations evaluated, can be quite different for different settings. Some modifica-

tions to the basic methodology of the approaches, such as using a quantified similarity 

calculation with observation frequency, or introducing polygon geometries which are re-

lated to habitat structures for focusing relevant geographic context, showed potential of 

improving results. Other modifications which were also tested, such as species-group-

specific search radii or date-specific OSM context adjusted to observation dates, did not 

prove to introduce any advantage. 

d) What are the extent and limits of indicative power of the obtained approaches to 

plausibility estimation? 

Both the observed communities approach and the OSM environments approach can be 

used to estimate the plausibility of a candidate observation’s location in light of the spe-

cies identification given by the observer. With a high level of similarity of candidate con-

text and observed community or OSM environment, the reported location is plausible for 

the given species, while a low level of similarity identifies an implausible location for the 

reported species. All other species with a similar observed community or OSM environ-

ment would produce similar plausibility estimations at the same location. In a casual citi-

zen science setting, this is especially relevant for species which can be easily mixed up 

because they are physically similar. Also, all other locations with a similar geographic 

context would render similar plausibility estimations for the reported species. 

More conclusions can be drawn when looking at the contributions of this work in more detail. Some of 

them present weaknesses and drawbacks of the approaches presented here, while others highlight their 

strengths and advantages.  

The number of species and of candidate observations which can actually be used with the approaches 

evaluated in this work is limited by several parameters:  

 minimum observation numbers of a target species required for extraction of observed commu-

nities or OSM environments,  

 threshold for association frequency,  

 frequency threshold for the elimination of nonspecific species or tags, and 
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 requirement of at least 10 species or tags per observed community, OSM environment and 

candidate context for similarity index calculation. 

With medium frequency thresholds at 0.5, and a minimum number of 10 observations of a target spe-

cies for observed communities extraction, the ArtenFinder use case produced valid observed commu-

nities for 26.8% of all species observed up to 2015, and the iNaturalist case did so for 15.5%. These 

numbers seem low, but because they represent the most frequently observed species in each dataset, 

they still allowed for estimating the plausibility of 50.1% of accepted ArtenFinder observations of the 

year 2016, and of 30.0% of 2016 iNaturalist research grade observations from California. The OSM 

environments approach was less effective with the same parameters, because OSM data have lower 

information content as a geographic context source, than have context observations. OSM environ-

ments and candidate OSM contexts are usually smaller than observed communities and candidate spe-

cies contexts, and therefore drop more often below the requirement of at least 10 tags per OSM envi-

ronment and candidate context for similarity calculation, which was set in this work to avoid erratic 

similarity results. The bottom line of these considerations is to keep in mind that both approaches can-

not be used on all candidate observations. In the form developed and evaluated here, they can only be 

used on species with a certain minimum stock of previous observations, and on candidates from loca-

tions which provide adequate information density in the form of context observations or of OSM tags. 

A citizen science project must run for some time to acquire enough data for both approaches to be 

feasible at least for some species, and in some locations or regions. This problem is mitigated, for ob-

served communities, by the fact that observations are usually clustered, supporting adequate context 

observation numbers within clusters. The OSM environments approach is, of course, dependent on an 

adequate information density in the form of tags.  

When selecting observation data for use with the observed communities or OSM environments ap-

proach, it is important to carefully consider the nature of the location information these observation 

data provide. Both approaches are suitable only for observations which are equipped with individual 

coordinates of the location where they were actually made. Observations which have displaced coor-

dinates, such as the central point of an arbitrary area or of a map quadrant (both also widespread in 

casual biodiversity observation datasets) cannot be used with these approaches in their form presented 

here, because observations would appear associated with other observations or with OSM tags which 

may actually not have been observed or mapped close to the true observation location. Of course, ob-

servation coordinates always have issues of precision, caused by technical properties of GPS receivers, 

and by uncertainty inherent in the process of volunteers placing an observation on different kinds of 

base maps. These uncertainties may erroneously place a context observation or OSM tag within the 

search radius around a target or candidate observation, although actually observed or mapped outside 

of this neighborhood, and vice versa. Mobility of many species also adds an element of randomness to 

observation coordinates. However, results of the studies conducted in this work show that these factors 

do not prevent the observed communities approach and the OSM environments approach from work-

ing, while certainly adding a certain amount of noise to results. Another important conclusion in this 

context is that both approaches, although evaluated here with casual citizen science observations of 

organisms, have the potential to be used with any data source providing observation data whose loca-

tion information fulfills the condition described above. 

Example cases taken from real, approved observations demonstrated that plausibility estimation by the 

observed communities approach or the OSM environments approach does not always support actual 

approval of a candidate case by the quality assurance mechanism in the respective project, although it 

does in the larger part of such cases. This underpins the important fact that these approaches can be 

used as indicators for identifying cases with unusual locations in light of existing data, but that valida-

tion decisions should always be based on more information about the candidate case, e.g., observation 
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date, observer experience, or a photo proof, none of which, alone, allow for a well-founded validation 

decision.  

Using VGI as a source of geographic context, as was done in this work, also holds numerous ad-

vantages. The observed communities approach, on the one hand, is completely intrinsic. It does not 

need any data other than the observation data already available in the project in question. It also uses 

the full context potential of a multi-species dataset. Context is therefore grounded on a broad basis of 

different species. In doing so, this approach avoids problems of local data scarcity as far as possible, 

and will work also for a candidate observation which has no previous observations of the same species 

close by, if there are enough observations of other species around its location. The OSM environments 

approach, on the other hand, builds on a freely and globally available source of geographic context 

which is growing more and more complete in many regions. In fact, all data sources used in this work 

were shown to grow in terms of data content, steadily improving the data basis. Typical for VGI data 

however, spatial inhomogeneity in the data persists, with some regions becoming more and more 

complete, while others remain relatively underrepresented. Still, taking the VGI-related properties 

inherent in the data into account is also a strength of the approaches presented here. In particular, they 

integrate important factors governing the thematic and spatial properties of the specific data they use, 

and return a plausibility estimation which is based both on the natural distribution of the target species, 

and on patterns created by the special data acquisition process which is specific to the citizen science 

project in question. What is more, both approaches inherently reflect regional characteristics of species 

distribution and observer behavior, reproducing in their results the data characteristics specific to the 

region whose data they use.  

The observed communities approach and the OSM environments approaches are spatially explicit in 

the sense that their plausibility estimations are specific to the location aspect of the candidate observa-

tion. This distinguishes them from most other approaches to plausibility estimation of observation 

data. Examination of the extent and limits of indicative power of the approaches presented in this work 

(chapter 5.4) rendered an intuitive way of demonstrating this fact, simply asking if and how the plau-

sibility estimation with an indicator would change if the location of the candidate observation 

changed. With the observed communities and the OSM environments approaches, plausibility of a 

candidate observation usually changes when the location of the candidate observation is changed to 

some extent, except changes to certain alternative locations with similar geographic context. Other 

plausibility indicators used in VGI quality assessment do not show this property. In some cases, this is 

quite obvious. For instance, a quite common technique of estimating the plausibility of a candidate 

observation is to compare its observation date to known annual periods of occurrence of the species 

observed. This indicator obviously does not hold any information on the plausibility of a candidate 

observation’s location: changing location of a candidate observation would not change the plausibility 

estimation given by such an indicator. Other approaches to estimating plausibility of a candidate ob-

servation present less obvious cases. For instance, a plausibility estimation based on the reputation of a 

volunteer considers a candidate observation to be plausible if the volunteer’s reputation is high. This 

plausibility estimation usually includes all aspects of the candidate observation, such as species identi-

fication, place, and date, all of which can be considered to be accurate if the volunteer is considered to 

be reliable. However, at a different location, the same candidate observation would be just as plausi-

ble, because changing the location does not change the volunteer’s reputation. In fact, the candidate 

observation would be just as plausible at any other location (and, of course, with any other date). An-

other well-established plausibility indicator for observations of organisms, which actually assesses an 

observations location, is comparison of observed location with the known spatial range of the species 

observed. In this case, plausibility of a candidate observation is the same everywhere within this range 

and candidate observations outside the range are implausible, giving this indicator’s information a 
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binary character. Plausibility information of the observed communities and the OSM environments 

approaches is different: it can be expected to show some form of continuous decay with growing dis-

tance to a candidate observation’s location, and to rise again when approaching a location which has a 

geographic context similar to the original location. This simple exercise demonstrates that established 

plausibility indicators, as well as the indicators presented in this work, have limits to what they actual-

ly convey. However, these limits are rarely communicated.  

Finally, the similarity indices used in this work bring to mind another consideration which might have 

some weight in a citizen science setting. Indices such as the Simpson or the Jaccard index have a 

straightforward meaning, which renders the approaches’ underlying principle comprehensible and 

transparent to a high degree. In the observed communities approach, Simpson index values express, in 

most cases, the rate of species in the observed community covered by the candidate context. The 

modiefied Simpson index tested in this work (see section 3.4.7) unifies this interpretation of the simi-

larity value in all candidate cases. Jaccard index values express the rate of species which are in com-

mon in observed community and candidate context, in the union of both species lists. Meanings of the 

indices are analogous in the OSM environments approach, where context species are replaced by OSM 

tags. Their straightforward meaning makes these indices especially suitable for use in citizen science 

settings where projects face the challenge of communicating their data processing procedures, includ-

ing quality control methods, to participants and to potential data users who are non-experts in the do-

main of biodiversity research.  
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6.2 Future Research 

The research, methods, and results presented in this thesis open up a large number of avenues for fur-

ther scientific investigation. This work did certainly not achieve an absolutely exhaustive investigation 

of the proposed methods’ properties, behavior and potential. Especially, more work on examining 

effects of properties of individual species, and of individual candidate cases, is certainly needed. Fu-

ture work should extend the sensitivity analysis conducted in this work to explore effects for individu-

al candidate cases with certain properties in more detail. Performing a more extensive sensitivity anal-

ysis also on the OSM environments approach would reveal where this approach’s reaction to parame-

ter changes and methodological modifications is different from the observed communities approach. 

Also, changes to parameters or modifications to the method might be combined to obtain certain de-

sired effects (e.g., raising numbers of species which can be evaluated) while counteracting undesired 

ones (e.g., a parallel raise in numbers of nonspecific species). 

The concept of species groups used here, borrowed mainly from the way the ArtenFinder project or-

ganizes its information, proved to be inadequate in some respects, because it aggregates species in part 

by criteria which do not go along with species properties relevant for the problems at hand. Regroup-

ing species across these groups by criteria such as mobility, habitat preferences, detectability, etc., 

might render more focused insights. A related problem was identified in the use of individual OSM 

tags as context information source: fragmentation of certain environmental information or elements 

into many different individual tags causes problems in attaching relevant properties of the environ-

ment to target species. A meaningful grouping of tags might help to solve this problem. Approaches to 

use OSM as a source of land cover information (Schultz et al. 2017) might lead the way here, but need 

adjustment to a more habitat-centered perspective. Also, applying the methods from this work on more 

data use cases will certainly reveal more problems, and trigger insights into possible improvements. 

What is also missing so far is a thorough assessment of the approaches’ usefulness, usability, and ben-

efit in data validation practice. This requires implementation of the approaches in the quality control 

workflow of a citizen science project, and the development and employment of suitable evaluation 

procedures. 

Future research should also be aimed at overcoming the major shortcomings of the methods which 

identified in this work. Although the perpetual observation process in casual citizen science observa-

tion projects, and of the mapping process in OSM, brings a steady improvement of these data’s suita-

bility as sources of geographic context, local or regional context data scarcity is one of the most im-

portant obstacles for the approaches to work on many candidate observations. A promising avenue 

towards overcoming this problem for the observed communities approach is to combine observation 

data of various sources into a potentially much more content-rich geographic context which would 

have the potential to possess a better geographic coverage, and therefore to provide a geographically 

more complete geographic context. However, such an endeavor is also fraught with difficulties, some 

of which were already hinted at. For instance, even highly unified data sources such as GBIF, which 

integrate observation data from many different sources in a homogeneous, easily accessible data 

source, still need careful consideration of data properties concerning the nature, accuracy, and preci-

sion of location information of data from different original sources. Data with individual locations 

should not be mixed with displaced locations such as map quadrant or user-defined area center points. 

Of course, the latter could be treated with modified methodological approaches, e.g., generating ob-

served communities from all observations of a user-defined area, if said area is suitably delimited (i.e., 

not too large or internally too heterogeneous). Use of data sources not-yet integrated or unified may 

present difficulties connected to taxonomy, which, however, can now be overcome with the help of 

appropriate online services. Also, combining different data sources will be most effective if they pro-
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vide spatially complementary data on different scales, locally as well as regionally. This implies that 

such an approach should aim to use data from sources with different data acquisition processes which 

result in disparate spatial distribution of their data. For instance, it might not suffice to choose several 

different casual citizen science observation repositories, as the volunteers involved in these projects, 

following the same basic rules of low-protocol data collection, would probably tend to visit the same 

locations or areas. A larger data basis might also allow for a more fine-grained treatment of observa-

tion data in terms of species’ behavior and life cycles. In this work, observed communities and OSM 

environments were extracted using all observations of a target species, although these observations 

may represent very different life stages or behaviors (e.g., feeding or breeding) which may be associ-

ated with very different contexts in terms of other species or OSM tags, because they are taking place 

in different locations. One could think of several different observed communities, or OSM environ-

ments, for the same target species, e.g., representing resting or feeding behavior. Tapping into these 

differences would add a new dimension to plausibility estimation, but would certainly also require 

large amounts of observation data. It might, however, already be feasible for some species. This is 

especially relevant in large regions where species migrate internally between different parts of that 

region, e.g. water fowl in California breeding on inland freshwater while passing the winter on the 

coast. 

Ideally, overcoming local or regional data scarcity will also work towards mitigating the influence of 

heterogeneity in spatial density of context information (context observations or OSM tags) on plausi-

bility estimation results, because a higher overall spatial density of observations might also lead to a 

reduction in density contrast between regions or locations. However, this heterogeneity can certainly 

be expected to persist for some more time, and to do so perpetually in certain regions, because it is an 

inherent property of opportunistic data collection processes. Therefore, future research must seek to 

weaken or even eliminate this factor, especially in the extrinsic OSM environments approach, where it 

definitely introduces an undesirable bias into plausibility estimation.  

An important conclusion of this work is that its approaches cannot alone determine a validation deci-

sion on a candidate observation, because their indicative power is limited. This is true for all plausibil-

ity indicators, and they are therefore often combined. Future research must examine how the indicators 

from this work can be integrated with others, which are based on other information, such as observa-

tion date, or trustworthiness of the volunteer, to play their part in a robust, objective plausibility esti-

mation of candidate observations which is based on many proven approaches.  
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7.1 Observed Communities Approach: Species Pairs for _SI1 Sets of 
Synthetic Implausible Observations 

7.1.1 ArtenFinder 

Table 7.1.1: ArtenFinder, species pairs used for candidate set AF_SI1. (Physically similar species 
living in different habitats used for creating synthetic implausible observations by swapping species 
identifications between accepted observations.) 
Species 1 Species 2 

Alauda arvensis Lullula arborea 
Anthus pratensis Anthus trivialis 
Apatura ilia Apatura iris 
Athene noctua Strix aluco 
Boloria dia Brenthis ino 
Boloria eunomia Boloria selene 
Boloria euphrosyne Boloria selene 
Brintesia circe Limenitis camilla 
Certhia familiaris Certhia brachydactyla 
Coenagrion puella Coenagrion scitulum 
Conocephalus dorsalis Metrioptera bicolor 
Cornu aspersum Helix pomatia 
Corvus corax Corvus corone 
Emberiza cirlus Emberiza citrinella 
Galerida cristata Lullula arborea 
Lacerta agilis Podarcis muralis 
Libellula fulva Orthetrum coerulescens 
Lycaena alciphron Lycaena hippothoe 
Lycaena dispar Lycaena virgaureae 
Melitaea athalia Melitaea aurelia 
Motacilla cinerea Motacilla flava 
Orthetrum brunneum Orthetrum coerulescens 
Parus montanus Parus palustris 
Phoenicurus ochruros Phoenicurus phoenicurus 
Podarcis muralis Zootoca vivipara 
Satyrium ilicis Satyrium acaciae 
Satyrium ilicis Thecla betulae 
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7.1.2 iNaturalist 

Table 7.1.2: iNaturalist, species pairs used for candidate set iNat_SI1. (Physically similar species 
living in different habitats used for creating synthetic implausible observations by swapping species 
identifications between accepted observations.) 
Species 1 Species 2 

Allium campanulatum Allium unifolium 
Arenaria melanocephala Tringa semipalmata 
Branta bernicla Branta hutchinsii 
Cistothorus palustris Thryomanes bewickii 
Clarkia gracilis Clarkia rubicunda 
Clarkia purpurea quadrivulnera Clarkia rubicunda 
Delphinium cardinale Delphinium nudicaule 
Fragaria chiloensis Fragaria virginiana 
Keckiella cordifolia Keckiella corymbosa 
Melospiza lincolnii Passerculus sandwichensis 
Melospiza melodia Passerculus sandwichensis 
Passerculus sandwichensis Zonotrichia atricapilla 
Passerculus sandwichensis Passerella iliaca 
Poecile atricapillus Poecile rufescens 
Tringa incana Tringa semipalmata 
Tringa incana Tringa melanoleuca 
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7.2 OSM environments Approach: Tags 

Table 7.2.1: OSM tags (key-value pairs) used in the OSM environments approach. (Continued next 
page.) 
key values 

aeroway aerodrome, airstrip, apron, fuel, gate, hangar, helipad, heliport, hold-
ing_position, launchpad, marking, navigationaid, parking_position, 
runway, spaceport, taxilane, taxiway, terminal, windsock 

amenity animal_breeding, animal_shelter, bbq, bench, biergarten, boat_rental, 
boat_sharing, boat_storage, bus_station, canoe_hire, car_pooling, cine-
ma, coast_guard, coast_radar_station, college, community_centre, 
courthouse, feeding_place, ferry_terminal, festival_grounds, 
fire_station, flight_school, fountain, game_feeding, garages, grave_yard, 
hospital, hunting_stand, kindergarten, lavoir, library, life_ring, life-
boat_station, marketplace, monastery, park, parking, public_building, 
ranger_station, research_institute, sanatorium, school, shelter, stables, 
table, theatre, townhall, university, waste_basket, waste_disposal, 
waste_transfer_station, water, watering_place, winery, yacht_club 

attraction animal 
barrier bump_gate, cable_barrier, cattle_grid, city_wall, ditch, fence, gate, 

hampshire_gate, hedge, hedge_bank, horse_jump, horse_stile, kiss-
ing_gate, log, retaining_wall, sally_port, stile, tank_trap, wall, 
wire_fence, wood_fence 

basin detention, infiltration, retention 
bridge aqueduct, boardwalk, cantilever, covered, movable, pontoon, sim-

ple_brunnel, swing, trestle, viaduct, yes 
building allotment_house, apartments, barn, barrack, boathouse, brewery, bridge, 

bungalow, bunker, cabin, carport, cathedral, chapel, church, civic, col-
lege, commercial, condominium, conservatory, construction, cowshed, 
detached, dormitory, farm, farm_auxiliary, garage, garages, greenhouse, 
hangar, hospital, house, houseboat, hut, industrial, kindergarten, manu-
facture, mosque, office, parking, pavilion, public, residential, rid-
ing_hall, roof, ruins, school, semi, service, shed, shrine, slurry_tank, 
sports_hall, stable, stadium, static_caravan, stilt_house, sty, supermar-
ket, synagogue, tech_cab, temple, terrace, train_station, transform-
er_tower, transportation, university, warehouse, yes 

camp_site basic, deluxe, standard 
construction bridleway, cycleway, footpath, footway, light_rail, living_street, minor, 

motorway, motorway_link, pedestrian, preserved, primary, prima-
ry_link, rail, residential, road, secondary, service, steps, tertiary, track, 
tram, trunk, trunk_link, unclassified, yes 

crop asparagus, bananas, barley, cassava, coffee, corn, flowers, grape, grass, 
hay, hop, maize, rape, rice, rye, strawberry, sugar, tea, wheat, yes 

cutting left, right, yes 
embankment yes 
emergency fire_water_pond, life_ring, lifeboat_station, lifeguard_place, life-

guard_platform, slipway, suction_point, water_rescue_station 
ford yes 
geology moraine, outcrop 
golf bunker, driving_range, fairway, hole, lateral_water_hazard, rough, tee, 

water_hazard 
grassland dehesa, dune, grey_dune, moor, pampas, prairie, puszta, savanna, 

steppe, veld 
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Table 7.2.1: Continued, OSM tags (key-value pairs) used in the OSM environments approach. (Con-
tinued next page.) 
key values 

harbour yes 
highway abandoned, bridleway, bus_guideway, bus_stop, byway, corridor, cross-

ing, cycleway, elevator, emergency_access_point, emergency_bay, es-
cape, footway, ford, give_way, incline, living_street, milestone, 
mini_roundabout, motorway, motorway_junction, motorway_link, no, 
passing_place, path, pedestrian, platform, primary, proposed, raceway, 
razed, residential, rest_area, road, secondary, service, services, 
speed_camera, speed_display, steps, stile, stop, street_lamp, tertiary, 
track, traffic_mirror, traffic_signals, trail, trunk, trunk_link, turn-
ing_circle, turning_loop, unclassified, unsurfaced, via_ferrata 

historic aqueduct, battlefield, bomb_crater, building, castle, city_gate, city_wall, 
citywalls, farm, fort, manor, mine, monastery, ruins, shieling, wreck 

industrial mine, port, salt_pond, scrap_yard, shipyard 
intermittent yes 
landmark cairn, cemetery, chimney, large_rock, rock_pinnacle, tower, windmotor 
landuse agriculture, allotments, apiary, aquaculture, basin, brownfield, build-

ing_site, cemetery, churchyard, civic_admin, commercial, construction, 
depot, farm, farmland, farmyard, field, fishfarm, flowerbed, forest, gar-
ages, grass, grave_yard, greenfield, greenhouse_horticulture, harbour, 
hop_garden, industrial, institutional, landfill, logging, meadow, military, 
observatory, orchard, pasture, peat_cutting, piste, plant_nursery, planta-
tion, plot, pond, port, prison, quarry, railway, recreation ground, reli-
gious, reservoir, residential, retail, salt_pond, street, traffic_island, trees, 
turbary, utility, village_green, vineyard, wasteland, well, wellsite, win-
ter_sports, wood 

leisure bandstand, bathing_place, bbq, beach_resort, bird_hide, common, 
dog_park, firepit, fishing, garden, golf_course, horse_riding, hot_spring, 
landscape_reserve, marina, maze, miniature_golf, nature_reserve, park, 
picnic, picnic_site, picnic_table, pitch, playground, recreation_ground, 
resort, sailing_club, shooting_ground, stadium, summer_camp, swim-
ming_area, table_tennis_table, wildlife_hide 

lock yes 
man_made adit, antenna, beehive, breakwater, bridge, bunker_silo, buoy, cairn, 

campanile, cellar_entrance, chimney, clearcut, communications_tower, 
cooling_tower, cross, cutline, dike, dolphin, dovecote, dyke, embank-
ment, frost_fan, gasometer, goods_conveyor, groyne, insect_hotel, lev-
ee, lighthouse, mast, nesting_site, offshore_platform, petroleum_well, 
pier, pillar, pipeline, pumping_station, quay, reservoir_covered, silo, 
snow_cannon, snow_fence, snow_net, spoil_heap, storage_tank, tell, 
tower, tunnel, utility_pole, wastewater_plant, water_tank, water_tower, 
water_well, water_works, watermill, wildlife_crossing, wild-
life_opening, windmill, windpump, works 

military airfield, barracks, bunker, danger_area, exclusion_zone, naval_base, 
obstacle_course, range, training_area 
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Table 7.2.1: Continued, OSM tags (key-value pairs) used in the OSM environments approach. 
key  values 

natural arete, , avalanche_dam, bare_rock, bay, beach, bedrock, breaker, cape, 
cave, cave_entrance, cliff, coastline, continental_shelf, crater, crevasse, 
desert, dune, earth_bank, esker, fell, fjord, geothermal, geothermal_area, 
geothermal_field, geyser, glacier, grassland, gully, heath, hot_spring, 
lake, land, landform, landslide, lava, marsh, moor, moraine, mud, naled, 
peak, plant, reef, ridge, river_terrace, riverbed, rock, saddle, sand, scree, 
scrub, shingle, shoal, shrub, sinkhole, spring, stone, strait, tidal, tree, 
tree_group, tree_row, tundra, valley, volcano, wallow, water, wetland, 
wood 

place allotments, archipelago, atoll, city, city_block, farm, hamlet, island, 
islet, isolated_dwelling, sea, square, suburb, town, village 

railway abandoned, construction, dismantled, disused, preserved, rail 
residential rural, university, urban 
route bicycle, canal, ferry, fitness_trail, foot, hiking, horse, inline_skates, mtb, 

mudflat_hiking, nordic_walking, pipeline, piste, railway, road, running, 
ski, tracks, train, tram 

sport archery, baseball, beachvolleyball, bmx, canoe, chess, cliff_diving, 
climbing, climbing_adventure, cricket, croquet, cycling, diving, 
dog_racing, equestrian, free_flying, gaelic_games, golf, 
high_rope_course, horse_racing, karting, kitesurfing, model_aerodrome, 
motocross, motor, multi, orienteering, paintball, parachuting, paraglid-
ing, roller_skating, rowing, sailing, scuba_diving, shooting_range, skat-
ing, skiing, soccer, surfing, tennis, water_ski 

surface asphalt, chipseal, cobblestone, compacted, concrete, dirt, earth, fi-
ne_gravel, grass, grass_paver, gravel, ground, ice_road, metal, mud, 
paved, paving_stones, pebblestone, roman_paving, sand, sett, unpaved, 
wood 

tidal rocks, yes 
tourism alpine_hut, attraction, camp_site, caravan_site, chalet, picnic_site, re-

sort, theme_park, trail_riding_station, viewpoint, wilderness_hut, zoo 
tunnel yes 
wall noise_barrier 
water canal, intermittent, lake, lock, pond, reservoir, river, salt_pool, tidal 
waterway brook, canal, construction, dam, derelict_canal, ditch, drain, drystream, 

fish_pass, mooring, rapids, river, riverbank, seaway, stream, 
stream_end, wadi, waterfall, weir 

wetland bog, fen, mangrove, marsh, mud, reedbed, saltern, saltmarsh, 
string_bog, swamp, tidalflat, wet_meadow 

wood coniferous, deciduous, eucalypt, evergreen, mixed, palm 
zoo aviary, birds, enclosure, falconry, petting_zoo, safari_park, wild-

life_park 
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7.3 Sensitivity Analysis: Graphs and Tables 

Results concerning effects of parameter changes and methodological modifications were described in 

section 4.3, and discussed in section 5.3. The following figures and tables present detailed graphic and 

numeric results and put them in contrast to evaluation results with basic parameter settings and basic 

methodology. 

In almost all comparisons between distributions of similarity values, statistical differences determined 

with the Mann-Whitney-U-Test (see section 3.3.1) were significant on the p ≤ 0.05 level, and vari-

ances determined with the Fligner-Killeen-Test (see also section 3.3.1) were not homogeneous. P-

values are therefore not listed here in detail. 
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7.3.1 Using a Lower Minimum Requirement for Approved Observations in Ob-
served Community extraction 

a) min. 10 observations 

 

b) min 100 observations 

 

  
Figure 7.3.1: ArtenFinder, distributions of Simpson similarity index values, analysis with smaller min-
imum number of 10 target species observations in observed community extraction (a,) and more con-
servative minimum number of 100 observations (b). 
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a) min. 10 observations 

 

b) min 100 observations 

 

 
Figure 7.3.2: ArtenFinder, distributions of Jaccard similarity index values, analysis with smaller min-
imum number of 10 target species observations in observed community extraction (a), and more con-
servative minimum number of 100 observations (b). 
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a) min. 10 observations 

 

b) min. 100 observations 

 

  
Figure 7.3.3: iNaturalist, distributions of Simpson similarity index values, analysis with smaller mini-
mum number of 10 target species observations in observed community extraction (a), and more con-
servative minimum number of 100 observations (b). 
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a) min. 10 observations 

 

b) min 100 observations 

 

 
Figure 7.3.4: iNaturalist, distributions of Jaccard similarity index values, analysis with smaller mini-
mum number of 10 target species observations in observed community extraction (a,) and more con-
servative minimum number of 100 observations (b). 
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Table 7.3.1: Analysis with smaller minimum number of target species observations in observed com-
munity extraction (10), key numbers describing valid observed communities. 

Data use 

case 

No. of valid observed 

communities 

Mean no. of species in 

observed communities 

No. of nonspecific species 

with min. no. of target observations: 

100 10 100 10 100 10 

ArtenFinder 183 792 31.7 43.6 46 39 

iNaturalist 234 1258 86.9 85.9 0 0 

 
Table 7.3.2: Analysis with smaller minimum number of target species observations in observed com-
munity extraction (10), key numbers describing sets of valid candidate observations. 

Set of  

candidates 

No. of valid 

candidate cas-

es 

Mean no. of 

species in  

candidate con-

texts 

Set of  

candidates 

No. of valid 

candidate cases 

Mean no. of 

species in  

candidate 

contexts 

with min. no. of target obs.: with min. no. of target obs.: 

100 10 100 10 100 10 100 10 

AF_A 22,426 34,719 108.2 111.9 iNat_A 34,821 50,147 132.3 132.9 

AF_SP 1,486 2,357 96.5 108.9 iNat_SP 2,415 3,868 316.9 309.2 

AF_R 362 608 115.1 125.8  

AF_SI1 1,718 3,486 99.5 105.5 iNat_SI1 2,216 3,116 106.4 106.7 

AF_SI2 22,179 34,303 102.5 104.7 iNat_SI2 34,485 49,662 127.6 125.2 

AF_SI3 22,896 36,720 31.2 32.6 iNat_SI3 4,768 7,374 34.4 35.5 
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7.3.2 Using Variable Search Radii 

a) search radii 1,000-3,000 m 

 

b) uniform search radius 1,000 m 

 

 
Figure 7.3.5: ArtenFinder, distributions of Simpson similarity index values, analysis with search radi-
us of 1,000-3,000 m for different species groups (a), and uniform search radius of 1,000 m (b). 
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a) search radii 1,000-3,000 m 

 

b) uniform search radius 1,000 m 

 

  
Figure 7.3.6: ArtenFinder, distributions of Jaccard similarity index values, analysis with search radi-
us of 1,000-3,000 m for different species groups (a), and uniform search radius of 1,000 m (b). 
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a) search radii 1,000-3,000 m 

 

b) uniform search radius 1,000 m 

 

 
Figure 7.3.7: iNaturalist, distributions of Simpson similarity index values, analysis with search radius 
of 1,000-3,000 m for different species groups (a), and uniform search radius of 1,000 m (b). 
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a) search radii 1,000-3,000 m 

 

b) uniform search radius 1,000 m 

 

  
Figure 7.3.8: iNaturalist, distributions of Jaccard similarity index values, analysis with search radius 
of 1,000-3,000 m for different species groups (a), and uniform search radius of 1,000 m (b). 
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Table 7.3.3: Analysis with search radius of 1,000-3,000 m for different species groups, key numbers 
describing valid observed communities. 

Data use 

case 

No. of valid observed 

communities 

Mean no. of species in 

observed communities 

No. of nonspecific species 

with radius configuration: 

1,000 1,000-3,000 1,000 1,000-3,000 1,000 1,000-3,000 

ArtenFinder 183 128 31.7 52.2 46 118 

iNaturalist 234 322 86.9 85.0 0 5 

 
Table 7.3.4: Analysis with search radius of 1,000-3,000 m for different species groups, key numbers 
describing sets of valid candidate observations. 

Set of  

candidates 

No. of valid 

candidate cas-

es 

Mean no. of 

species in  

candidate con-

texts 

Set of  

candidates 

No. of valid 

candidate cases 

Mean no. of 

species in  

candidate 

contexts 

with radius configuration: with radius configuration: 

1,000 
1,000-

3,000 
1,000 

1,000-

3,000 
1,000 

1,000-

3,000 
1,000 

1,000-

3,000 

AF_A 22,426 12,071 108.2 181.8 iNat_A 34,821 58,131 132.3 180.9 

AF_SP 1,486 1,062 96.5 207.6 iNat_SP 2,415 3,560 316.9 300.2 

AF_R 362 188 115.1 155.3  

AF_SI1 1,718 2,074 99.5 195.8 iNat_SI1 2,216 2,447 106.4 201.4 

AF_SI2 22,179 11,935 102.5 166.0 iNat_SI2 34,485 57,664 127.6 175.6 

AF_SI3 22,896 32,791 31.2 42.7 iNat_SI3 4,768 29,857 34.4 42.1 
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7.3.3 Modifying Thresholds for Frequently Associated Specie sand Nonspecific 
species 

7.3.3.1 Modified Threshold for Identifying Frequent Associations Between a Target Species 
and its Context Species 

 

a) threshold 0.25

 

b) threshold 0.50 

 

c) threshold 0.75 

 

   
Figure 7.3.9: ArtenFinder, distributions of Simpson similarity index values. a) Analysis with threshold 
for identifying frequent associations between a target species and its context species reduced to 0.25. 
b) Threshold 0.50. c) Threshold raised to 0.75. 
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a) threshold 0.25 

 

b) threshold 0.50 

 

c) threshold 0.75 

 

   
Figure 7.3.10: ArtenFinder, distributions of Jaccard similarity index values. a) Analysis with thresh-
old for identifying frequent associations between a target species and its context species reduced to 
0.25. b) Threshold 0.50. c) Threshold raised to 0.75. 
 

a) threshold 0.25 

 

b) threshold 0.50 

 

c) threshold 0.75 

 

   
Figure 7.3.11: iNaturalist, distributions of Simpson similarity index values. a) Analysis with threshold 
for identifying frequent associations between a target species and its context species reduced to 0.25. 
b) Threshold 0.50. c) Threshold raised to 0.75 (iNat_SI1: n = 6). 
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a) threshold 0.25 

 

b) threshold 0.50 

 

c) threshold 0.75 

 

   
Figure 7.3.12: iNaturalist, distributions of Jaccard similarity index values. a) Analysis with threshold 
for identifying frequent associations between a target species and its context species reduced to 0.25. 
b) Threshold 0.50. c) Threshold raised to 0.75 (iNat_SI1: n = 6). 
 

Table 7.3.5: Analysis with threshold for identifying frequent associations between a target species and 
its context species reduced to 0.25 or raised to 0.75, key numbers describing valid observed communi-
ties. 

Data use 

case 

No. of valid observed 

communities 

Mean no. of species in 

observed communities 

No. of nonspecific species 

with threshold: 

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 

ArtenFinder 143 183 159 52.8 31.7 20.9 131 46 5 

iNaturalist 474 234 47 105.3 86.9 100.0 31 0 0 

 

  



7 Appendix 209 

 

Table 7.3.6: Analysis with threshold for identifying frequent associations between a target species and 
its context species reduced to 0.25 or raised to 0.75, key numbers describing sets of valid candidate 
observations, ArtenFinder data. 

Set of  

candidates 

No. of valid candidate cases Mean no. of species in  

candidate contexts 

with threshold: 

0.25 0.50 0.75 0.25 0.50 0.75 

AF_A 9,967 22,426 35,024 67.9 108.2 136.5 

AF_SP 1,303 1,486 2,000 71.3 96.5 105.6 

AF_R 221 362 331 68.8 115.1 142.2 

AF_SI1 1,891 1,718 1,740 66.6 99.5 125.4 

AF_SI2 9,640 22,179 34,757 74.8 102.5 121.4 

AF_SI3 7,651 22,896 38,878 28.7 31.2 32.3 

 
Table 7.3.7: Analysis with threshold for identifying frequent associations between a target species and 
its context species reduced to 0.25 or raised to 0.75, key numbers describing sets of valid candidate 
observations, iNaturalist data. 

Set of  

candidates 

No. of valid candidate cases Mean no. of species in  

candidate contexts 

with threshold: 

0.25 0.50 0.75 0.25 0.50 0.75 

iNat_A 59,207 34,821 4,575 108.2 132.3 243.2 

iNat_SP 6,435 2,415 465 226.3 316.9 443.7 

iNat_SI1 2,040 2,216 6 97.2 106.4 295.0 

iNat_SI2 58,297 34,485 4,554 103.4 127.6 170.4 

iNat_SI3 7,621 4,768 684 33.2 34.4 34.7 
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7.3.3.2 Modified Threshold for Identifying Nonspecific Species 

a) threshold 0.25 

 

b) threshold 0.50 

 

c) threshold 0.75 

 

   
Figure 7.3.13: ArtenFinder, distributions of Simpson similarity index values. a) Analysis with thresh-
old for identifying nonspecific species reduced to 0.25. b) Threshold 0.50. c) Threshold raised to 0.75. 
 

a) threshold 0.25 

 

b) threshold 0.50 

 

c) threshold 0.75 

 

   
Figure 7.3.14: ArtenFinder, distributions of Jaccard similarity index values. a) Analysis with thresh-
old for identifying nonspecific species reduced to 0.25. b) Threshold 0.50. c) Threshold raised to 0.75. 
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a) threshold 0.25 

 

b) threshold 0.50 

 

c) threshold 0.75 

 

   
Figure 7.3.15: iNaturalist, distributions of Simpson similarity index values. a) Analysis with threshold 
for identifying nonspecific species reduced to 0.25. b) Threshold 0.50. c) Threshold raised to 0.75. 
 

a) threshold 0.25 

 

b) threshold 0.50 

 

c) threshold 0.75 

 

   
Figure 7.3.16: iNaturalist, distributions of Jaccard similarity index values. a) Analysis with threshold 
for identifying nonspecific species reduced to 0.25. b) Threshold 0.50. c) Threshold raised to 0.75 
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Table 7.3.8: Analysis with threshold for identifying nonspecific species reduced to 0.25 or raised to 
0.75, key numbers describing valid observed communities. 

Data use 

case 

No. of valid observed 

communities 

Mean no. of species in 

observed communities 

No. of nonspecific species 

with threshold: 

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 

ArtenFinder 122 183 192 24.9 31.7 40.3 74 46 28 

iNaturalist 186 234 234 101.8 86.9 86.9 8 0 0 

 

Table 7.3.9: Analysis with threshold for identifying nonspecific species reduced to 0.25 or raised to 
0.75, key numbers describing sets of valid candidate observations, ArtenFinder data. 

Set of  

candidates 

No. of valid candidate cases Mean no. of species in  

candidate contexts 

with threshold: 

0.25 0.50 0.75 0.25 0.50 0.75 

AF_A 14,009 22,426 34,552 93.3 108.2 117.1 

AF_SP 879 1,486 2,102 81.1 96.5 115.1 

AF_R 217 362 422 99.7 115.1 126.1 

AF_SI1 1,192 1,718 2,813 84.8 99.5 108.1 

AF_SI2 13,822 22,179 34,181 93.0 102.5 108.9 

AF_SI3 13,127 22,896 35,885 30.2 31.2 31.7 

 
Table 7.3.10: Analysis with threshold for identifying nonspecific species reduced to 0.25 or raised to 
0.75, key numbers describing sets of valid candidate observations, iNaturalist data. 

Set of  

candidates 

No. of valid candidate cases Mean no. of species in  

candidate contexts 

with threshold: 

0.25 0.50 0.75 0.25 0.50 0.75 

iNat_A 26,025 34,821 34,821 137.8 132.3 132.3 

iNat_SP 1,923 2,415 2,412 356.5 316.9 319.3 

iNat_SI1 1,556 2,216 2,216 111.3 106.4 106.4 

iNat_SI2 25,811 34,485 34,524 132.2 127.6 127.4 

iNat_SI3 3,640 4,768 4,841 35.4 34.4 33.9 

 

  



7 Appendix 213 

 

7.3.4 Using Auxiliary Land Cover Information 

Table 7.3.11: CORINE land cover classes occurring in Rheinland-Pfalz. 
Code Land cover 
1 Artificial surfaces 
1.1.  Urban fabric  
1.1.1.  Continuous urban fabric 
1.1.2.  Discontinuous urban fabric 
1.2.  Industrial, commercial and transport units 
1.2.1.  Industrial or commercial units 
1.2.2.  Road and rail networks and associated land 
1.2.3.  Port areas 
1.2.4.  Airports 
1.3.  Mine, dump and construction sites 
1.3.1.  Mineral extraction sites 
1.3.2.  Dump sites 
1.3.3.  Construction sites 
1.4.  Artificial non-agricultural vegetated areas 
1.4.1.  Green urban areas 
1.4.2.  Sport and leisure facilities 
2 Agricultural areas 
2.1.  Arable land 
2.1.1.  Non-irrigated arable land 
2.2.  Permanent crops  
2.2.1.  Vineyards 
2.2.2.  Fruit trees and berry plantations 
2.3.  Pastures  
2.3.1.  Pastures 
2.4.  Heterogeneous agricultural areas 
2.4.2.  Complex cultivation 
2.4.3.  Land principally occupied by agriculture, with significant areas of natural vegetation 
3 Forests and semi-natural areas 
3.1.  Forests  
3.1.1.  Broad-leaved forest 
3.1.2.  Coniferous forest 
3.1.3.  Mixed forest 
3.2.  Shrub and/or herbaceous vegetation association 
3.2.1.  Natural grassland 
3.2.2.  Moors and heathland 
3.2.4.  Transitional woodland shrub 
3.3.  Open spaces with little or no vegetation 
3.3.2.  Bare rock 
4 Wetlands  
4.1.  Inland wetlands  
4.1.1.  Inland marshes 
5 Water bodies 
5.1.  Inland waters 
5.1.1.  Water courses 
5.1.2.  Water bodies 
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Table 7.3.12: NLCD land cover classes occurring in California. 
Code Land cover 
Water 
11 Open Water  
12 Perennial Ice/Snow 
Developed 
21 Developed, Open Space 
22 Developed, Low Intensity 
23 Developed, Medium Intensity 
24 Developed High Intensity 
Barren 
31 Barren Land (Rock/Sand/Clay) 
Forest 
41 Deciduous Forest 
42 Evergreen Forest 
43 Mixed Forest 
Shrubland 
52 Shrub/Scrub 
Herbaceous 
71 Grassland/Herbaceous 
Planted/Cultivated 
81 Pasture/Hay 
82 Cultivated Crops. 
Wetlands 
90 Woody Wetlands 
95 Emergent Herbaceous Wetlands 
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a) CORINE land cover 

 

b) no additional geometries 

 

c) ELUs 

 

   
Figure 7.3.17: ArtenFinder, distributions of Simpson similarity index values. a) Analysis using 
CORINE land cover geometries. b) No additional geometries used. c) ELU geometries used. 
 

a) CORINE land cover 

 

b) no additional geometries 

 

c) ELUs 

 

   
Figure 7.3.18: ArtenFinder, distributions of Jaccard similarity index values. a) Analysis using 
CORINE land cover geometries. b) No additional geometries used. c) ELU geometries used. 
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a) NLCD 

 

b) no additional geometries 

 

c) ELUs 

 

   
Figure 7.3.19: iNaturalist, distributions of Simpson similarity index values. a) Analysis using NLCD 
geometries. b) No additional geometries used. c) ELU geometries used. (iNat_SI1 ELU: three species 
in 136 valid candidate cases). 
 

a) NLCD 

 

b) no additional geometries 

 

c) ELUs 

 

   
Figure 7.3.20: iNaturalist, distributions of Jaccard similarity index values. a) Analysis using NLCD 
geometries. b) No additional geometries used. c) ELU geometries used. (iNat_SI1 ELU: three species 
in 136 valid candidate cases). 
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Table 7.3.13: Analysis using CORINE land cover (CLC), NLCD or ELU data in defining relevant 
search areas, key numbers describing valid observed communities. 

Data use 

case 

No. of valid observed 

communities 

Mean no. of species in 

observed communities 

No. of nonspecific species 

with geometries from: 

CLC/ 

NLCD none ELUs 

CLC/ 

NLCD none ELUs 

CLC/ 

NLCD none ELUs 

ArtenFinder 184 183 186 25.2 31.7 24.5 13 46 23 

iNaturalist 120 234 50 118.5 86.9 28.8 0 0 0 

 
Table 7.3.14: Analysis using CORINE land cover (CLC) or ELU data in defining relevant search are-
as, key numbers describing sets of valid candidate observations, ArtenFinder data. 

Set of  

candidates 

No. of valid candidate cases Mean no. of species in  

candidate contexts 

with geometries from: 

CLC none ELUs NLCD none ELUs 

AF_A 31,570 22,426 29,800 82.3 108.2 85.4 

AF_SP 2,065 1,486 1,606 86.2 96.5 71.8 

AF_R 379 362 369 87.8 115.1 88.6 

AF_SI1 1,466 1,718 1,735 74.1 99.5 76.5 

AF_SI2 21,041 22,179 23,447 52.2 102.5 67.4 

AF_SI3 13,490 22,896 17,857 26.7 31.2 29.0 

 
Table 7.3.15: Analysis using NLCD or ELU data in defining relevant search areas, key numbers de-
scribing sets of valid candidate observations, iNaturalist data. 

Set of  

candidates 

No. of valid candidate cases Mean no. of species in  

candidate contexts 

with geometries from: 

NLCD none ELUs NLCD none ELUs 

iNat_A 13,681 34,821 5,649 122.6 132.3 83.1 

iNat_SP 1,275 2,415 208 408.4 316.9 122.1 

iNat_SI1 606 2,216 136 79.2 106.4 76.9 

iNat_SI2 10,079 34,485 3,890 73.7 127.6 75.8 

iNat_SI3 1,124 4,768 462 29.1 34.4 31.6 
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7.3.5 Using a Quantitative Similarity Index 

a) frequency weighting 

 

b) Jaccard index 

 

c) distance weighting 

 

   
Figure 7.3.21: ArtenFinder, distributions of Similarity Ratio values. a) Analysis using observation 
frequency for weighting. b) Jaccard index. c) Distance weighting used. 
 

a) frequency weighting 

 

b) Jaccard index 

 

c) distance weighting 

 

   
Figure 7.3.22: iNaturalist, distributions of Similarity Ratio values. a) Analysis using observation fre-
quency for weighting. b) Jaccard index. c) Distance weighting used. 
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7.3.6 Examining Edge Effects 

a) with edge effect correction 

 

b) no edge effect correction 

 

 
Figure 7.3.23: ArtenFinder, distributions of Simpson similarity index values, analysis of edge effects. 
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a) with edge effect correction 

 

b) no edge effect correction 

 

  
Figure 7.3.24: ArtenFinder, distributions of Jaccard similarity index values, analysis of edge effects.   
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a) with edge effect correction 

 

b) no edge effect correction 

 

 
Figure 7.3.25: iNaturalist, distributions of Simpson similarity index values, analysis of edge effects. 
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a) with edge effect correction 

 

b) no edge effect correction 

 

  
Figure 7.3.26: iNaturalist, distributions of Jaccard similarity index values, analysis of edge effects.  
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Table 7.3.16: Analysis of edge effects, key numbers describing valid observed communities. 

Data use 

case 

No. of valid observed 

communities 

Mean no. of species in 

observed communities 

No. of nonspecific species 

with (right) or without (left) edge effect correction: 

No corr. With corr. No corr. With corr. No corr. With corr. 

ArtenFinder 168 168 32.5 32.3 49 50 

iNaturalist 232 233 87.7 87.4 0 0 

 
Table 7.3.17: Analysis of edge effects, key numbers describing sets of valid candidate observations. 

 

Set of  

candidates 

No. of valid 

candidate cas-

es 

Mean no. of 

species in  

candidate con-

texts 

Set of  

candidates 

No. of valid 

candidate cases 

Mean no. of 

species in  

candidate 

contexts 

with (right) or without (left) 

edge effect correction: 

with (right) or without (left) 

edge effect correction: 

No 

corr. 

With 

corr. 

No 

corr. 

With 

corr. 

No 

corr. 

With 

corr. 

No 

corr. 

With 

corr. 

AF_A 18,374 18,475 112.2 112.1 iNat_A 34,491 34,589 132.7 132.6 

AF_SP 1,063 1,041 126.3 127.3 iNat_SP 2,464 2,344 314.7 318.1 

AF_R 314 314 115.5 115.5  

AF_SI1 1,391 1,391 102.0 101.6 iNat_SI1 2,214 2,214 106.4 106.4 

AF_SI2 18,171 18,271 97.5 96.8 iNat_SI2 34,160 34,268 127.7 127.8 

AF_SI3 18,035 18,108 31.2 31.3 iNat_SI3 4,802 4,836 34.8 34.4 
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7.3.7 Variant of Simpson Index 

a) Variant of Simpson index 

 

b) Simpson Index 

 

  
Figure 7.3.27: ArtenFinder, distributions of variant of Simpson index and original Simpson index 
values. 
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a) Variant of Simpson index 

 

b) Simpson index 

 

 
Figure 7.3.28: iNaturalist, distributions of variant of Simpson index and original Simpson index val-
ues. 
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7.3.8 Using Date-Specific OSM Context 

a) date-specific OSM state 

 

b) current OSM state 

 

  
Figure 7.3.29: ArtenFinder, distributions of Simpson similarity index values, analysis with date-
specific OSM state (a), and with current OSM state (b). 
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a) date-specific OSM state 

 

b) current OSM state 

 

 
Figure 7.3.30: ArtenFinder, distributions of Jaccard similarity index values, analysis with date-
specific OSM state (a), and with current OSM state (b). 
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a) date-specific OSM state 

 

b) current OSM state 

 

  
Figure 7.3.31: iNaturalist, distributions of Simpson similarity index values, analysis with date-specific 
OSM state (a), and with current OSM state (b). 
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a) date-specific OSM state 

 

b) current OSM state 

 

 
Figure 7.3.32: iNaturalist, distributions of Jaccard similarity index values, analysis with date-specific 
OSM state (a), and with current OSM state (b). 
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Table 7.3.18: Analysis with date-specific OSM state, key numbers describing valid observed communi-
ties. 

Data use 

case 

No. of valid OSM 

environments 

Mean no. of tags 

in OSM environ-

ments 

No. of nonspecific 

tags 

No. of nonspecific 

species 

with OSM state: 

current 

date-

specific current 

date-

specific current 

date-

specific current 

date-

specific 

ArtenFinder 402 275 19.5 16.5 25 20 39 39 

iNaturalist 635 606 20.1 18.3 9 3 0 0 

 
Table 7.3.19: Analysis with date-specific OSM state, key numbers describing sets of valid candidate 
observations. 

Set of  

candi-

dates 

No. of valid can-

didate cases 

Mean no. of tags 

in candidate 

contexts 

Set of  

candi-

dates 

No. of valid can-

didate cases 

Mean no. of tags 

in candidate con-

texts 

with OSM state: with OSM state: 

current 

date-

specific current 

date-

specific current 

date-

specific current 

date-

specific 

AF_A 15,329 10,647 35.6 37.3 iNat_A 35,058 28,873 33.6 33.0 

AF_SP 1,568 1,317 39.8 38.2 iNat_SP 2,131 1,627 29.9 28.5 

AF_R 215 177 32.8 30.3  

AF_SI1 2,104 996 33.2 31.7 iNat_SI1 290 161 28.9 27.8 

AF_SI2 14,964 10,473 34.0 35.0 iNat_SI2 34,654 28,588 32.5 32.0 

AF_SI3 15,618 11,114 23.2 23.1 iNat_SI3 4,542 4,408 18.5 18.2 
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