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Abstract

Modern society produces spatiotemporal datasets at an unprecedented velocity and volume. People are
leaving their digital traces when they tap their oyster cards to ride the London underground and when
they share their brand preferences through paying with loyalty cards. These examples show how deeply
digital services are now integrated into people’s everyday lives. For this reason, geosocial media feeds,
one type of everyday digital datasets, have recently gained considerable attention in academic research.
The users who contribute data to these feeds collect subjective impressions about places and social events
in a proactive yet often unconscious manner. Numerous examples are found in geography where social
media data has been used to investigate human mobility, social livelihoods, or for other purposes, and a
range of novel insights were achieved this way.

One step in the investigation of geosocial media content is the spatial analysis of the users’ data
records. It allows to assess spatial relations and the contextualization of the messages by relating them to
covariates. However, the spatial analysis of this kind of data turns out to feature a number of formidable
methodological challenges: the relationship between messages and places is often elusive, and issues like
the self-selection bias and semantic ambiguities complicate the analysis. Probably the most problematic
effect is that variegated phenomena are reflected in the data simultaneously, leading to the notion of
spatially superimposed heterogeneous random variables. Available spatial analysis methods are not able
to address these characteristics. We thus need a thorough understanding of their effects, and novel ways to
investigate the fine-grained organization of places by, for instance, using geosocial media data.

The research presented in this thesis is located at the interface between spatial analysis methodology
and the characteristics of spatially superimposed random variables. Three types of contributions are
presented: (i) the interactions of spatial analysis techniques with spatially superimposed random variables
are investigated; (ii) novel methods for their analysis and characterization are put forward; and (iii) the
broader context of the discussed matters is explored, including a discussion of similar methodological
issues in different fields. Three datasets are employed: two real-world Twitter samples covering dif-
ferent temporal scales, and one idealized synthetic dataset representing the characteristics of spatially
superimposed random variables.

The empirical contribution focuses on estimators of spatial autocorrelation and hot-spot statistics.
Thereby, the impacts of mixed geographic scales and adverse topological arrangements on spatial analysis
results are investigated. It is found that geosocial media datasets contain a mixture of geometric scales,
and that smaller scales dominate analysis results. This leads to biased hot-spot statistics which are inflated
by false positives. Estimators of spatial autocorrelation show indications for false patterns that result
from adverse topological arrangements caused by the representation of various phenomena in the data.
The joint influences of scale and topology show a complex interplay leading to unpredictable behaviours,
further complicating result interpretation.

The methodological contribution of this thesis is two-fold: First, a modified hot-spot statistic is
proposed that takes account of the geometric characteristics of superimposed random variables. This
statistic allows the detection of hot-spots when multiple scales are present in datasets. Second, a statistical
test is derived that allows to investigate the local interactions between the arrangement of random variables
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in geographic space and their local variance. The latter test can be used to investigate how places, like
those represented in geosocial media, are characterized in terms of their endogenous variability.

Exploring the broader context reveals that questions in the analysis of spatially superimposed random
variables are not limited to geosocial media, but extend to other areas such as socio-ecological psychology.
This latter field features novel techniques such as the so-called event sampling method, which allow
the collection of geotagged in situ surveys under contextual conditions. These raise methodological
questions similar to those around geosocial media, which renders a common research agenda meaningful.
Furthermore, it is discussed how, despite of the outlined issues that are investigated in this thesis, some of
the available spatial analysis methods have still been applied successfully in the empirical literature.

In summary, the presented findings will allow gaining a better understanding of the spatial organization
of the digital representations of places on geosocial media feeds. Further, the obtained methodological
results are an important step towards the notion of a place-based GIS, which is a long-term goal in
GIScience. Ultimately, this will increase our understanding of human geographic everyday behaviours.
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Kurzzusammenfassung

Unsere moderne Informationsgesellschaft produziert fortlaufend raumzeitliche Datensätze in einer nie
dagewesenen Geschwindigkeit und Menge. Menschen hinterlassen ihre digitalen Spuren bei der Nutzung
des öffentlichen Personennahverkehrs mit E-Tickets oder bei der Preisgabe ihrer Markenpräferenzen
über den Einsatz von Kundenkarten. Diese Beispiele demonstrieren die flächendeckende und tiefe
Verankerung digitaler Technologien im Alltag. Geosoziale Medien haben dabei jüngst eine besondere
Aufmerksamkeit in der akademischen Forschung erfahren. Nutzer hinterlassen proaktiv, jedoch oft
unbewusst, subjektive Eindrücke und Meinungen über Orte und soziale Ereignisse. In der Geographie
erscheinen in jüngerer Zeit zahlreiche Arbeiten, die diese Daten für die Untersuchung menschlicher
Mobilität, sozialer Aktivitätsräume, oder für andere Zwecke nutzen. Auf diese Weise wurden bereits
zahlreiche neue Erkenntnisse über die räumliche Organisation des Alltagslebens unserer Gesellschaften
gewonnen.

Ein wichtiger Schritt in der Untersuchung der Inhalte geosozialer Medien besteht in deren räumlicher
Analyse. Diese erlaubt etwa die Untersuchung regionaler Verflechtungen und eine räumliche Kontextual-
isierung der Daten. Dabei treten jedoch veritable methodische Herausforderungen auf: die Beziehung
zwischen einer Nachricht und dem zugehörigen Ort ist oft nicht eindeutig bestimmbar und Probleme wie
Selbstselektivität oder die Ambiguität der semantischen Beiträge verkomplizieren räumliche Analysen.
Das vermutlich gravierendste Problem besteht jedoch in der räumlich und zeitlich koinzidenten Repräsen-
tation verschiedener Phänomene, was zum Begriff räumlich überlagerter und heterogener Zufallsvariablen
führt. Vorhandene räumliche Analysemethodiken sind nicht in der Lage die Eigenschaften solcher
Zufallsvariablen zu berücksichtigen. Erkenntnisse über deren Auswirkungen sowie neue methodische
Ansätze sind deshalb notwendig, um detaillierte Erkenntnisse über die räumliche Organisation von Orten
mittels Daten sozialer Medien zu erzielen.

Die in dieser Arbeit präsentierte Forschung befasst sich mit der Schnittstelle zwischen räumlicher
Analysemethodik und den Eigenschaften der genannten räumlich überlagerten Zufallsvariablen. Drei
Arten wissenschaftlicher Beiträge werden dabei gemacht: es werden (i) empirische Erkenntnisse hin-
sichtlich der Interaktion zwischen Methodik und Dateneigenschaften erzielt; (ii) methodische Beiträge zur
Berücksichtigung und weitergehenden Charakterisierung dieser Eigenschaften präsentiert; und (iii) diese
Erkenntnisse in einen breiteren Kontext eingebettet, der über die Geographie hinausgeht. Drei Daten-
sätze kommen dabei zum Einsatz: zwei extrahierte Twitterdatensätze auf unterschiedlichen Zeitskalen,
sowie ein synthetisch erzeugter Datensatz. Letzterer reflektiert die Eigenschaften räumlich überlagerter
heterogener Zufallsvariablen in idealisierter Form.

Der empirische Beitrag hat die Untersuchung von Schätzern räumlicher Autokorrelation und Hot-
Spot-Statistiken zum Thema. Dabei werden die Einflüsse überlagerter räumlicher Maßstäbe und durch
Heterogenität verursachter topologischer Anordnungen auf die Ergebnisse dieser Methoden untersucht.
Ein Resultat ist, dass in sozialen Medien eine Mischung unterschiedlicher Maßstäbe zu finden ist, wobei
kleine Maßstäbe die Daten dominieren. Dies führt zu verzerrten Hot-Spot-Schätzungen, was wiederum
eine erhöhte Zahl falsch-positiver Resultate nach sich zieht. Schätzer räumlicher Autokorrelation reagieren
auf die Eigenschaften räumlicher überlagerter Zufallsvariablen mit Indikationen fälschlicher räumlicher
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Strukturen, was wiederum auf die topologischen Anomalien der Überlagerung von Phänomenen zurück-
zuführen ist. Der gemeinsame Effekt von Topologie und Maßstabsvariation besteht in einem schwer
vorhersagbaren und komplexen Verhalten in der Schätzung räumlicher Statistiken.

Die methodische Kontribution dieser Arbeit besteht aus zwei Teilen: Zum Einen wird ein modifizierter
Schätzer für Hot-Spots entwickelt. Dieser ist in der Lage, verschiedene simultan vorhandene Maßstäbe zu
behandeln und erlaubt deren getrennte Analyse. Zum Anderen wird eine Teststatistik hergeleitet, welche
die Untersuchung von Wechselwirkungen zwischen geographischer Anordnung und lokaler Varianz
erlaubt. Auf diese Weise ist es möglich, Orte, wie sie etwa in geosozialen Medien repräsentiert sind, über
das Zusammenspiel ihrer Varianz und ihrer räumlichen Konfiguration zu beurteilen.

Die erzielten Ergebnisse deuten darauf hin, dass die aufgezeigten Problematiken von genereller Natur
und somit nicht auf geosoziale Medien beschränkt sind. Ein Beispiel für einen verwandten Bereich
mit ähnlichen Problematiken stellt die sozialökologische Psychologie dar. Neuere Methoden dieser
Disziplin, wie zum Beispiel ereignisbasierte Umfragen die im realen Umgebungskontext in georeferen-
zierter Form erhoben werden, weisen ähnliche Eigenschaften wie Daten aus geosozialen Medien auf.
Diese Ähnlichkeiten werden in der Arbeit herausgearbeitet. Ein Resultat hiervon ist, dass sich eine
multidisziplinäre Betrachtungsweise und eine gemeinsame zukünftige Forschungsagenda zur effizien-
ten Problemlösung anbieten. Darüber hinaus werden auch Fälle präsentiert, in denen die Anwendung
räumlicher Analysemethoden erfolgreich zu sinnhaften Erkenntnissen geführt hat.

Zusammenfassend bietet diese Arbeit Erkenntnisse und Ansätze zum besseren Verständnis der räum-
lichen Organisation digital repräsentierter Orte. Außerdem stellen die entwickelten Methoden einen
wesentlichen Beitrag hin zu einer ortsbasierten Analyse und einem ortsbasierten GIS dar—ein langfristiges
und noch nicht erreichtes Ziel in der Geoinformatik. Die Ergebnisse dieser Arbeit werden somit nachhaltig
zum besseren Verständnis menschlicher Raumnutzung im Alltagsverhalten beitragen.
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Summary and Conclusions





I.1 Introduction

A number of novel user-generated and georeferenced datasets have recently become available to geo-
graphical research, including those from geosocial media feeds. On the one hand, these datasets are a
direct result of technological developments that have led to an omnipresence of mobile and networked
devices. On the other hand, they result from a conflation of data usage and production (the prosumer and
the produser paradigms, see Haklay et al. 2008; Coleman 2009; Ritzer et al. 2012). The related web
services used to collect the data are characterized by a strong integration into everyday activities. Global
communication and self-portrayal via geosocial media feeds have become routine behaviours, so that
these feeds now collect geotagged and timestamped data reflecting various aspects of the lives of ordinary
people.

Geosocial media feeds complement Al Gore’s vision of a digital earth (Gore 1998; Craglia et al.
2012)—a ‘digital skin’ that mirrors information from and about our planet. It adds a layer depicting
the everyday individual and collective social spheres. Recently and with increasing availability through
accessible application programming interfaces (APIs), researchers are also using this kind of data for
scientific studies. Examples are found across the empirical disciplines including geography, where user-
generated content is leveraged in investigations of human mobility behaviours, to disclose geotemporal
demographics and in numerous other fields (cf., Mitchell et al. 2013; Steiger et al. 2016b; Longley and
Adnan 2016). Although these novel data have provoked some criticism, especially with regard to their
uncritical use (Lazer et al. 2014; Kitchin 2014; Rae and Singleton 2015), geosocial media data still provide
information that would otherwise not be available for scientific exploitation.

Geosocial media datasets are collective and subjective in nature. People communicate their opinions
and impressions about places, about activities happening therein, and about their personal feelings. How-
ever, people who are leaving their digital spatiotemporal trails are often not aware that their contributions
are not only stored as individual data records, but form part of collective databases into which their
contributions are fed through the underlying socio-technical applications. The collected data can then be
used to derive detailed usage patterns from the users’ everyday lives. The implied lack of user awareness
clearly raises privacy concerns (Tasse et al. 2017). Yet, it also offers the compelling advantage of collecting
data from and about people interacting in their daily environmental contexts in a rather natural way, though
issues like self-selection bias or semantic ambiguities can still be reflected in the data (Sengstock and
Gertz 2012; Tufekci 2014). In contrast to traditional forms of data acquisition like surveys or interviews
where people are exposed to an unnatural setting, the everyday embedding of geosocial media leads to an
inherent normality in using the outlined services, which reveals otherwise unavailable information making
the related data appealing to academic research.

Data from geosocial media feeds allow detailed investigations of the everyday behaviours of people.
The entirety of these behaviours forms the everyday geography of an individual which circumscribes the
“sum total of a person’s first-hand involvements with the geographical world in which he or she lives”
(Seamon 1979, pp. 15-16). The concept of everyday geography describes the social practices that occur in
so-called activity spaces (Horton and Reynolds 1971), which represent the fraction of earth’s surface that
is utilized by an individual. However, the analysis of everyday geographies and their associated places
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through geosocial media data is challenging for two main reasons: (i) The conditions under which the
user-generated information is created are often intractable and remain elusive (the ‘uncertain geographic
context problem’; Vich et al. 2017); (ii) people contribute their data largely independent of each other,
leading to a number of variegated subjective momentary assessments at similar times and places. These
two issues indeed reflect the very nature of individual everyday geographies, but they also lead to technical
challenges.

Geosocial media datasets thus represent different data-generating processes (DGPs, the ‘true models’;
Hammervold and Olsson 2012) simultaneously, each of which is associated with specific users and their

idiosyncratic contexts. This type of data can therefore be seen as a collection of spatiotemporal slices, each
describing a snapshot of the specific in situ and personalized geographical conditions in certain places at
specific times. Because multiple people contribute their subjective impressions, these space-time slices
are in themselves inhomogeneous in a potentially indivisible manner. This inherent diversity of geosocial
media data hinders the achievement of substantial and rigorous geographical insights. However, it also
provides surplus to geographical analysis, because it implies an ample amount of detailed information
about places and situations from different perspectives.

The assessment of spatial relationships through spatial analysis techniques forms one important part in
characterizing human everyday geographies. It allows the disclosure of geographical activity clusters and
the identification of contextual influences (Unwin 1996; Fischer and Getis 2010b). One key assumption in
spatial analysis is the notion of spatial uniformity of the observed spatial processes in null models of no
spatial effects. This is formalized by the concept of stationarity, of which different forms exist. The notion
of second-order stationarity is applied most frequently in spatial analysis, and it refers to constant means
and variances in the observation area. This implies consistent covariance-based spatial relationships that
are independent of their absolute locations and depend only on the interdependence structure between
spatial units (Gaetan and Guyon 2010).

In the view of the above discussion, second-order stationarity is an unrealistic assumption with regard
to geosocial media data. The observed processes vary depending on the individual, and are influenced by
idiosyncratic and subjective local contexts. This inevitably leads to spatial heterogeneity (i. e., unstable
statistical parameters) (Anselin 1990), which is the most devastating disturbance to spatial analysis
because it invalidates globally estimated parameters and null models used for drawing inferences (Griffith
and Layne 1999). Further, because established stationarity concepts describe uniformity over spatially
disjoint units, these are not capable to depict the internal inhomogeneity that is found within locations
and time slots in a mixed manner like in geosocial media feeds. These conditions are summarized and
discussed in this thesis under the term spatially superimposed and heterogeneous random variables.

The interface between spatially superimposed heterogeneous random variables and spatial analysis
methodology sets the frame for this thesis, which is organized into three parts. Part (i) investigates in
which ways the geographically superimposed manner of individual geosocial media contributions impacts
spatial analysis results in the sense of invalidating or impeding drawn conclusions. The discussion is
constrained to Twitter data and the focus is on measures of spatial autocorrelation and hot-spot techniques,
two commonly applied types of methods that are relevant to empirical research. Part (ii) makes a
methodological contribution by introducing two novel techniques: One is a modified hot-spot technique
that takes account of the data characteristics of spatially superimposed random variables. The second
proposed method is a statistical test of the links between the variance and the spatial layout in strictly
local circumstances, allowing detailed investigations of the heterogeneity associated with local spatial
superpositions of random variables. Finally, part (iii) discusses the implications of the achieved results
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with regard to their relevance beyond the field of spatial analysis. This includes a discussion of how spatial
analysis techniques have been applied to geosocial media data in empirical studies. Further, a connection
to recent methodological discussions in socio-ecological psychology is made. The latter underpins the
relevance of the results presented in this thesis and is aimed to start a broader interdisciplinary discussion.

I.1.1 Presumptions

The research presented in this thesis and the formulation of viable research questions require some initial
presumptions to be made. These are supported by the literature and the discussions in the introductory
part above:

� The data published on geosocial media capture snapshots of people’s everyday behaviours. Geo-
located media and GIS technology have become deeply integrated with daily routines, and Sui and
Goodchild (2011) have conjectured a continuation of this trend.
� Geosocial media is influenced by contextual conditions. The posting of messages depends on

intrinsic contextual circumstances including physical and social conditions, activity contexts into
which users are engaged and individual incentives (Zimmermann et al. 2007).
� Geosocial media data provides information about the whereabouts of people. Empirical research

shows evidence that for instance Twitter data provides information about the whereabouts of people
at the neighbourhood scale or larger (Steiger et al. 2015b; Ratnasari et al. 2016; Steiger et al. 2016a).
It is thus reasonable to assume a relation between the whereabouts of users and the posted contents
also at smaller geographic scales.
� Users contribute their messages independent of each other. People are largely independent individu-

als during the use of geosocial media. Beyond societal trends, the postings of other users usually
have little influence on a user’s decision to post contents on geosocial media.
� The textual content of user contributions can be uncertain and vague. People have different

spatial perception characteristics (cf., Wender et al. 2002), are prone to differing contextual settings
(Zimmermann et al. 2007; Crampton et al. 2013) and follow individual incentives (Ames and
Naaman 2007; Cuel et al. 2011; Oh and Syn 2015). This introduces uncertainty into geosocial
media contents.
� The geotags attached to geosocial media data are obtained by built-in smartphone GPS receivers or

by network positioning techniques. The contents are provided with distinct coordinates. However,
because these are influenced by GPS inaccuracies, topography, and other factors (see Zandbergen
2009; Carrion et al. 2017), the coordinates contain modest measurement errors.
� Geosocial media data is often pre-processed before spatial analysis is conducted. Typical pre-

processing steps include natural language processing and noise reduction, which is evident from the
empirical literature (e. g., Bakillah et al. 2015; Lansley and Longley 2016; Steiger et al. 2016b).
� Geosocial media datasets are non-stationary in the traditional sense and, in addition, violate

stationarity assumptions within the observed locations. Geosocial media datasets provide spa-
tially superimposed and variegated georeferenced random variables. Available spatial analysis
methodologies do not take sufficient account of this circumstance.

In addition to these presumptions, the employed use cases in the following research are restricted to
Twitter data. This means that many of the exemplary results reflect the characteristics of digital geolocated
narratives, including the demographics of the users. Photo-sharing platforms like Flickr or check-in sites
such as Foursquare are not considered in this thesis and might show slightly different data characteristics.
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I.1.2 Research Questions

Two major and two minor research questions are formulated under the presumptions given above. The
main questions RQ 1 and RQ 2 are too complex to be answered in a single step. Therefore, these are
subdivided into more detailed sub-questions. The minor questions RQ 3 and RQ 4 offer a broader context
and provide links to neighbouring fields.

RQ 1: How do spatially superimposed random variables affect spatial analysis results?

The analysis of spatially superimposed random variables often includes spatial analysis methods. Recent
examples for their application to geosocial media data are found in Frank et al. (2013) (radius of gyration,
Moran’s I, Geary’s c), Cheng and Wicks (2014) (spatiotemporal scan statistics) and Luo et al. (2016a)
(space-time trajectory analysis). Traditional application areas of spatial analysis include census records
and data collected in a controlled way for scientific purposes. However, geosocial media data is collected
largely unsystematically, so that one questionable point in their analysis is the assumption of second-order
stationarity (see I.3.3), as it is implied by many spatial analysis methods. Strategies are available to deal
with the violation of this assumption, including the analysis of first and second-order derivatives (Lillesand
et al. 2015; Gelfand and Banerjee 2015), spatially-constrained analysis approaches (Patil et al. 2006;
Bravo and Weber 2011) or the use of adapted estimators (Ord and Getis 2001). However, these strategies
assume processes to be heterogeneous in disjoint sub-regions, but to be homogeneous within the individual
locations. The inherent heterogeneity of (non-identical) spatially superimposed random variables infringes
this condition and prevents the application of the strategies outlined above to compensate for the violation
of stationarity. One of the main objectives of this thesis is therefore to explore how the violation of
stationarity assumptions affects spatial analysis results.

RQ 1.1: In what ways are hot-spot estimations affected by different overlaid spatial scales?

Hot-spot techniques allow to disclose regions where extremal values accumulate in geographic space.
These are important to a range of theoretical and practical matters such as cluster detection or the
identification of social, biological or similar activity centres. However, what complicates this kind of
analysis with geosocial media data is that people contribute observations independently and that there
are no restrictions on semantic subjects. In consequence, multiple phenomena at different and spatially
mixed scales are reflected at the same times and locations. Further, people use different idiosyncratic
concepts of scale when they contribute subjective impressions about the same whereabouts, leading to
variegated spatial conceptualizations (Wender et al. 2002; Dangschat 2007). This is in stark contrast to
data collected specifically for geographic research, where the acquisition scale is adjusted to a single
coherent phenomenon and where no subjectively perceived spatial scales are included. Contrarily, when
it comes to the interpretation of analysis results obtained from superimposed random variables and to
inferences about these, it is important to be aware of potential conflicts and cross-scale interactions that
can corrupt the obtained results. Question 1.1 thus explores how geosocial media datasets are composed
with respect to contained geographic scales, and how that in turn impacts the estimation of hot-spots.

RQ 1.2: How do topological and statistical effects of spatial overlap influence spatial autocorrelation?

Data characteristics strongly influence the estimation of spatial autocorrelation. It is well-known that
Moran’s I (see I.3.2) converges to normality faster when random variables are approximately normal or
at least follow a symmetric distribution (Griffith 2010). The estimator is also sensitive to topological
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imbalances in the geographic layout through unequal connectivity degrees (Tiefelsdorf and Boots 1997;
Tiefelsdorf et al. 1999; Shortridge 2007) and requires a minimum variability within the investigated
random variables to provide sufficient statistical power (Walter 1992a; Walter 1992b). By analogy, the
variances of the underlying DGPs must be uniform to draw reliable inferences about Moran’s I (Oden
1995; Waldhör 1996; Shen et al. 2016). These findings demonstrate strong indications that geosocial
media data characteristics—like the outlined mixture of spatial scales and other implications caused
by the heterogeneity inherent to geosocial media data—influence results from spatial analysis methods.
Specifically, it is another goal of this thesis to investigate the influence of topological outliers on the
disclosure of spatial structure by Moran’s I. The liberal data acquisition schemes of geosocial media feeds
are likely to cause an adverse placement of messages in geographic space, rendering the investigation of
topology and connectedness relevant. Additionally, the influences of different statistical parameter values
between overlapping DGPs is investigated. These cause a mixture distribution, but the role of the spatially
overlapping geometric setup is yet unclear, and thus another objective of this research question.

RQ 1.3: Which influences do joint topological and scale effects have on spatial autocorrelation?

The combination of different effects can intensify their individual impacts on spatial analysis results. For
instance, the effects of endogenous spatial dependence and exogenous spatial heterogeneity on regression
analysis are problematic in terms of violating technical requirements (Anselin and Griffith 1988; Porojan
2001). However, their joint effects are even more severe and make it difficult to specify a correct model.
It is possible in these cases that regression residuals might falsely appear to be spatially structured even
though that might be a mere artefact caused by the joint effect of the two simultaneous issues. Another
example is the influence of coexisting local and regional effects when assessing spatial structures (Ord and
Getis 2001; Johnson et al. 2013). Neglecting their interdependence leads to an inflation of the variance of
test statistics and to a wrong specification of null models, and thus to misleading conclusions about spatial
patterns. These two examples make clear how important it is to take account of the interaction of different
data characteristics. Thus, a third goal pertaining to main question 1 is to explore how scale-related (RQ
1.1) and topological issues (RQ 1.2) together influence the estimation of spatial autocorrelation by the
example of Moran’s I.

RQ 2: How to identify and characterize spatial structures in superimposed random variables?

Spatial structures are assessed and characterized by first and second-order spatial data characteristics.
First-order characteristics describe the intensity, whereas second-order characteristics assess interactions
within random variables (Fischer and Getis 2010b). Both are of interest to a range of scenarios like
cluster detection or the characterization of stochastic processes (a list of possible applications is found in
Getis 2007, p. 494). However, as discussed above, existing methods are not suitable for superimposed
random variables. Therefore, the focus of this question is on the derivation of novel (i) hot-spot measures
and (ii) measures that allow to investigate the relationships between geographic arrangements and the
magnitude of local variances. The latter is related to spatial autocorrelation, but can additionally be
used to characterize the variability within superimposed random variables in relation to their spatial
organization, and thus to obtain a clearer characterization of places. A more detailed breakdown into
specific sub-questions is introduced below.

RQ 2.1: How can hot-spots at different, geographically coexisting spatial scales be disclosed separately?

Matching the analysis and the phenomenon scale is crucial for identifying meaningful structures (Good-
child 2001). Hot-spot estimators are particularly prone to scale misspecifications, because these measures
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accumulate local data points in an additive manner. Especially when the analysis scale is coarse, results
are then quickly biased by including unrelated samples. The scale of an analysis can be controlled by
adjusting distance parameters (e. g., in analyses of geographically continuous phenomena; Gneiting and
Guttorp 2010), or by calibrating a so-called spatial weights matrix (when spatially discrete phenomena are
analysed; Pace and LeSage 2010)). Because geosocial media feeds are indexed over discrete geographic
units, it is required to adjust a matrix of pairwise relationships between the sampled locations. A multitude
of different matrix designs is available (cf. Aldstadt and Getis 2006; Mawarni and Machdi 2016; Ermagun
and Levinson 2017), but no approach exists that acknowledges the specific spatial characteristics of
superimposed random variables. One aim of RQ 2.1 is therefore to establish a spatial weighting scheme
that takes account of the representation of various spatially overlapping scales in data. Further, because
geosocial media comprises multiple scales at the same time, a second objective is to adapt the popular
hot-spot technique G*

i (Getis and Ord 1992; Ord and Getis 1995) towards the disclosure of hot-spots at
different scale levels in a separated manner.

RQ 2.2: How can the influence of spatial structures on local variance be tested in non-stationary superim-
posed random variables?

The investigation of the spatial heterogeneity of superimposed random variables is useful for a better
understanding of this type of data. Spatial heterogeneity is a proxy of the spatial instability in random
variables (Dutilleul and Legendre 1993). In traditional datasets this refers to instability in statistical
moments over an observation area. In case of superimposed random variables, spatial heterogeneity
should additionally be investigated locally within the locations, which allows detailed characterizations
of how the local spatial arrangement of random variables influences their diversity. In turn, this helps
to better understand the spatial organization of places. The analysis of spatial structure in variance can
for instance be conducted by a recently published technique called Local Spatial Heteroscedasticity
(LOSH; Ord and Getis 2012; Xu et al. 2014a) which allows to investigate how spatial structures affect the
magnitude of the variance. Application areas of this method include investigations of the internal structure
of clusters or the detection of geographic boundaries (e. g., Getis (2015)). However, LOSH is not capable
of dealing global spatial heterogeneity in the null model, as it cannot take account of strong differences
in the dispersal behaviours of different random variables. Further, the measure cannot characterize the
relation between structure and variance in superimposed scenarios, because LOSH identifies the globally
dominating heterogeneous features instead of fine-grained local spatial variance structures. The latter is
required for the aforementioned characterizations of places in geosocial media data. RQ 2.2 therefore
objectifies to modify LOSH (including a suitable inference mechanism) to make it applicable to spatially
superimposed random variables in a globally heterogeneous setting.

RQ 3: How are superimposed random variables analysed spatially in empirical studies?

Despite the methodological challenges outlined above, numerous empirical spatial analyses of superim-
posed random variables have been conducted. The question arises as to how these are carried out if the
available methods are not tailored to the requirements of this type of data. This entails a discussion of
typically used methods and ways how the high degree of heterogeneity of the data is considered. Beyond
a review of methods and approaches, this research question also touches upon the interpretation and the
validity of obtained results. These points are discussed at various scales and include the individual as well
as the collective level in terms of the geosocial media users. Several selected case studies from human
mobility research—a field in which geosocial media data is frequently used—are reviewed with regard
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to their spatial analysis approaches applied. Further, the potential of using this kind of data as well as
future research topics are elaborated. Another focal aspect of this research question is a more general
discussion of the application areas of geosocial media data in the spatial context. These largely include
spatial analysis approaches, which connects them to the other research questions in this thesis.

RQ 4: To what extent are spatially superimposed random variables from other research fields re-
lated to geosocial media data?

Spatially superimposed heterogeneous random variables are not exclusively considered in geography
and spatial analysis. A field with very similar types of data is socio-ecological psychology (Rentfrow
2013; Oishi 2014). This branch, which is also known as geographical psychology, explicitly considers
geographical and other contextual effects in the design and interpretation of surveys and of other data
acquisition techniques. One important methodology in this field is the so-called event sampling method
(ESM; Reis and Gable 2000). Thereby, surveys are conducted under in situ conditions and the respondents
answer questions while being engaged in everyday activities and exposed to contextual factors. This
results in answers which are less affected by interviewer-induced effects, but on the other hand raises
similar questions as with geosocial media data. ESM responses form superimposed random variables,
even though the sample sizes are typically smaller than in case of geosocial media data. In answering this
research question, parallels are drawn between the main results of this thesis (RQ 1 and RQ 2) and ESM
responses. Further, it is discussed how contextual factors and subjective as well as cognitive influences
impact the data, with an emphasis on their spatial characteristics. The achieved results for RQ 4 further
strengthen the relevance of the other results achieved in this thesis, as they show the importance of these
for methodological research areas beyond geography.

I.1.3 Structure and Context of the Research

As in statistics in general, contributions to spatial analysis must take account of methods, data charac-
teristics, research fields and application scenarios simultaneously. The outlined research questions of
this thesis cover the entire breadth of these elements through touching upon a range of related aspects.
Figure I.1.1a illustrates that each of the four research questions is associated with one of the mentioned
and interrelated components of spatial analysis. This links the research questions and shows that this
work offers a comprehensive treatment of the presented topic. Further, I.1.1b makes clear that the thesis
still has a clear focus through classifying the accompanying publications into four quadrants spanned
by the research questions. The accumulation in the first quadrant shows that the main contribution is
situated at the junction between methodology and data characteristics, whereas the other dimensions are
treated too, but are covered less extensive. The obtained results therefore provide a multifaceted treatment
of the analysis of spatially superimposed and heterogeneous random variables, while making a strong
methodological contribution at the same time.
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Figure I.1.1: Structure and context of the research in this thesis. (a) Placement in the subject-specific
context. (b) Assignment of publications to research questions.
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I.2 Geosocial Media

Enjoying a delicious latte with friends

Figure I.2.1: Illustration of a constructed Twitter message.

Geosocial media content like the constructed Twitter message above (Figure I.2.1) is often colloquial.
The tweet shown here tells of an apparently trivial situation that does not seem to be relevant for anyone
beyond the author’s private communication. Not surprising, researchers often consider messages like
the one above irrelevant for their geosocial media investigations and frequently remove them as noise.
However, a closer look beyond the ostensible triviality of this everyday message reveals that the tweet1

contains more information than it seems at first glance. It features details about the author and about
the related place where the message was likely generated. For example, the fact that the author meets
with friends could describe their whereabouts as a so-called ‘third place’, i. e., as a place “other than the
home or workplace where people can [...] commune with friends, neighbo[u]rs, coworkers, and even
strangers” (Mehta and Bosson 2010, p. 779). Further, latte macchiato consumption has been related
to a “rootless cosmopolitanism” lifestyle (Wurgaft 2003). If this takes place in locations that appear
intrusive and threatening to the local social fabric, like Starbucks chain coffeehouses, this may indicate
a potential gentrification process in the surrounding neighbourhood, because, as Wurgaft (2003) puts it,
“gentrification is the disease, [while] Starbucks is the symptom” (Wurgaft 2003, p. 74).

The simple example above shows that supposedly irrelevant information can describe phenomena
of different social and geographical scales: it discloses individual-level information about the user, but
also about the local geography in the nearby areas. Such information can characterize the material (a
café), social (a sociable place) and economic (medium to high priced cafés) properties of whereabouts and
individuals. However, the most profound difference between geosocial media messages and traditional
geographical data sources like surveys is that the authors of such messages do most likely communicate this
information unconsciously, and thus without any intent to provide researchers data for further exploitation.
The message was instead composed for self-expression, for connecting with like-minded people, or simply
for communicating with friends. The information about the related place is therefore ambient in nature
and a mere by-product of the everyday communication, which makes geosocial media data appealing
to the analysis of the subjective imaginary of routine places. The following sub-sections introduce
key characteristics of geosocial media feeds and discuss differences to other forms of user-generated
geographic information, as well as to established forms of geographic data.

1The term tweet is used synonymously with Twitter message.
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I.2.1 A Technological Perspective

Two developments have taken place in recent years that made possible the emergence of user-generated
geolocalizable content: an increasing penetration of our everyday lives with mobile technologies, and
a changed attitude in using digital media. Both of these developments are intertwined and cannot
be considered separately. The success of mobile technologies has only been possible because it was
accompanied by changes in our societal norms and behaviours. It has become normal for internet users to
not only consume static contents but to also contribute individual information to the Web. Users have
literally become produsers (Coleman 2009; Sieber and Rahemtulla 2010), which reflects an increased
willingness to share virtually all but the most private pieces of information online. These developments
are in no way new, but form part of the larger societal process of the integration of technologies into the
lives of people, starting in the 1940s with the advent of computers and continuing ever since (Poorthuis
and Zook 2013). The Web 2.0 paradigm started to emerge at the end of the 1990s as one variant of this
trend.

The Web 2.0 constitutes one of the backbones of modern mobile and participatory Internet technologies.
The underlying stack of sociotechnical techniques and practices is characterized by an ubiquity of
networking capabilities, the large-scale availability of heterogeneous datasets, and the willingness to share
user-generated and often private content (O’Reilly 2010). These technological and societal developments
fostered the proliferation of mobile and geolocalization technologies. It is thus the evolution of the
Web 2.0 paradigm that has made possible the development of geographically annotated datasets like those
provided by geosocial media feeds.

The outlined developments have increased the availability of geotagged datasets. Together with the
required hardware and software components, as well as with positioning technologies like GPS receivers,
geotagged datasets form the so-called Geoweb (Scharl and Tochtermann 2007). The Geoweb acts as an
interface to the creation of, and access to, geoinformation in and from a variety of life circumstances
(Haklay et al. 2008; Crampton 2009; Leszczynski 2015). For example, the fact that people can determine
their momentary geolocations using GPS receivers installed in smartphones, and that these geotags can be
attached to text messages like tweets, shows that it is the simultaneous interplay of hardware (smartphones
and GPS) and software (social media platforms) components that makes the Geoweb thrive.

The umbrella term Geoweb subsumes all kinds of georeferenced contents on the Web. It is not limited
to user-generated contents, requiring to distinguish further between the one-way Geoweb of georeferenced
but static contents, from other datasets which are the result of a two-way interactive process involving
the users’ proactive participation (Johnson and Sieber 2012). These latter participatory types of Geoweb
components can be further sub-divided into different modes of production of geospatial user-generated
information (Rinner and Fast 2015):

• Crowd mapping (the digitizing of features from the material world)
• Citizen sensing (the passive collection of georeferenced data)
• Citizen reporting (the proactive collection of georeferenced data)
• Map-based discourse (the expression of opinions about real-world circumstances)
• Geosocial media (the active or passive collection of often unstructured opinions)

These modes of production relate to different kinds of datasets and social practices. Crowd mapping
means the creation and sharing of maps in a collaborative manner, with OpenStreetMap2 (OSM) being

2http://www.openstreetmap.org

http://www.openstreetmap.org
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the most notable example. This kind of data acquisition includes the explicit intent of users to share
geographic information. In contrast, citizen sensing and citizen reporting refer to the collection of ambient
information about particular whereabouts of people. People provide geolocalizable information, but the
practice of mapping is typically not part of that. Geographic coordinates are therefore acquired en passant.
The latter is also the case with map-based discourse platforms. These include portals like TripAdvisor3

where people discuss about real-world places that exist in the material world. Finally, geosocial media
feeds are inherently different from all other types of Geoweb applications in that the related applications
are based on subjective opinions about circumstances ranging from material places to the sphere of
socially-constructed spaces.

I.2.2 Disambiguation of Geosocial Media Feeds

Geosocial media feeds are inherently diverse and various concurrent terms exist to capture their charac-
teristics. However, these terms are not equivalent, as they have subtle connotations that can change the
meaning of the underlying software and data. Some terms are of technical nature (e. g., location-based
social media (LBSM); Evans and Saker 2017), others highlight certain functionalities of the platforms,
such as the ability of social networking (location-based social networks (LBSN); Roick and Heuser 2013).
See et al. (2016) recently provided an overview of the most important terminologies around geosocial
media and how these are used across different domains. They proposed the following taxonomy (the list
is sorted by decreasing generality):

Pervasive user-generated content (Pervasive UGC). This term was introduced by Krumm et al. (2008).
It is very general and covers all sorts of digital artefacts that are made available by users on the Web (e. g.,
pictures and videos). The adjective ‘pervasive’ expresses that these artefacts are entrenched in the daily
routines of users through the use of mobile devices. Users literally carry the content with them and use it
in local contexts where the digital files become part of and influence social practices. However, since the
data does neither have to be geotagged nor must it be related to any geographic place, pervasive UGC
describes a high-level concept, of which geosocial media feeds form a special case.

Citizen-contributed geographic information (CCGI). Introduced by Spyratos et al. (2014), CCGI
covers volunteered data from crowd mapping platforms and geosocial media data. In contrast to pervasive
UGC, the concept of CCGI only includes data that has specifically been created by the users themselves.
It also only refers to explicitly georeferenced content. Still, because its focus is very broad including
projects like OSM, the term does not permit further subdivision of different sorts of geosocial media feeds
into subcategories. It is thus treated here as another overarching category that specializes further the term
pervasive UGC, but is superordinate to geosocial media feeds.

Contributed geographic information (CGI). Harvey (2013) puts forward the term CGI, which emphas-
izes the role of the users in collecting localizable content. Thereby, this may or may not happen without
the users’ knowledge and explicit decision to contribute geographical information. The focus is thus on
the fact that data is contributed by lay persons as a by-product of their device usage. People contribute
geographic data in a largely unconscious manner through sensors installed in smartphones, geosocial
media, or by contributing to citizen sensing initiatives. The latter is a category of typically specialized
projects requiring a minimum level of domain knowledge (see Boulos et al. 2011), and does typically not
reflect well peoples’ everyday life behaviours.

3http://www.tripadvisor.com

http://www.tripadvisor.com
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Involuntarily volunteered geographic (iVGI), and ambient geospatial information (AGI). The terms
iVGI (Fischer 2012) and AGI (Stefanidis et al. 2013) are largely congruent and describe two important
facets of geosocial media data: The term AGI makes very explicit the ambient nature of the collected
information by partly representing the characteristics of local contexts in which people use geosocial
media. Further, the term iVGI describes the unconsciousness and opportunism in this data collection
(Kelley 2013; Graham et al. 2013; Sester et al. 2014; Kitchin et al. 2017). People use geosocial media
feeds not for data collection but for following their personal intents. Stefanidis et al. (2013) emphasize
another important characteristic, which is that users may still have intrinsic motivations to proactively
communicate either a description or the coordinates of a location, for instance when they share photos of
popular places to improve their own reputation. This is relevant for characterizing the spatial everyday
behaviours of people in a realistic manner. It is this intrinsic motivation of users to capture and disclose
information about places that leads to a wealth of collective and individual-level geographic information.

Geosocial media data can appear in different forms. For instance, a tweet behaves like a subjective
narrative about a place and may not refer to any material entity. In contrast, a user-generated photo may
reflect a material geographical entity, while the choice of taking the photo and the way it is taken are
still subjective decisions. Geosocial media messages are therefore to be understood as reflections of the
subjective perception of places, rather than as precise representations of objective geographical facts.
Technically, this is reflected by various formats of geosocial media (Coleman 2009; Rinner and Fast
2015):

• plain coordinate locations (like a whereabout posted on Facebook4),
• categorical or numerical values (for instance age information in a user profile),
• attribute tags (like Twitter5 hashtags),
• content ratings (as those awarded to Foursquare/Swarm6 venues),
• multimedia items (like Flickr7 photos),
• complex narratives (such as microblog content posted on Twitter).

From a technical standpoint, this thesis focuses on content from microblogging services like Twitter
that deliver textual data in an unstructured manner. The focus is thus on the spatial analysis of complex
narratives describing places. Because of the strong integration of geosocial media into the everyday lives
of the users, their interpretation—including their geospatial characteristics—requires to also understand
the social processes that accompany the production of the associated data.

I.2.3 Geosocial Media as a Form of Social Practice

The use of geosocial media entails new forms of social practices. Due to the ubiquity of geosocial media
feeds and because of their high degree of embedding in routine situations, they also imply a strong
societal dimension. This is conceptualized by the term Neogeography (Turner 2007; Haklay et al. 2008;
Hudson-Smith et al. 2009; Haklay 2013; Leszczynski 2014), which was introduced by Turner (2007) in
his seminal book. He defines Neogeography as a collective term for practices involving “people using
and creating their own maps” and “about sharing location information with friends and visitors, helping

4http://www.facebook.com
5http://www.twitter.com
6http://www.swarmapp.com
7http://www.flickr.com

http://www.facebook.com
http://www.twitter.com
http://www.swarmapp.com
http://www.flickr.com
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shape context, and conveying understanding through knowledge of place” (Turner 2007, p. 3). While the
term Geoweb emphasizes the technological perspective on user-generated geographic content, the study
of Neogeography thus focuses on the processes how, and the circumstances under which these data are
being created and shared (Elwood et al. 2012).

The social practices involved in the everyday production of geodata impact social norms and beha-
viours beyond the appearance of new technologies and data (Kitchin et al. 2017). Their impact reaches
out into the material world (Sui and Goodchild 2011), making the geographical dimensions of cyberspace
and the material world evolve in a coexisting manner (Poorthuis and Zook 2013; Crampton et al. 2013).
Adopting Leibniz’s notion of relative space as the sum total of human geospatial interactions anchored in
the material reality (Quesnot and Roche 2015), this suggests the interaction between material and virtual
spaces. For instance, when geosocial media users read negative formulated messages about a place, this
can impact an individual’s mobility behaviour in that people may try to avoid the corresponding region.
By analogy, when Facebook users can see the whereabouts of their friends on a map, this may trigger
spontaneous meetings and can thus support the strengthening of social cohesion (Sutko and de Souza e
Silva 2011; de Souza Silva 2013). These examples demonstrate the dualism between material and virtual
spaces and illustrates the feedback mechanisms between the physical behaviours of people in the material
world and the digital image of places.

Interactions between the virtual and the material geographic space are influenced by a range of
endogenous and exogenous factors. For instance, the motivation for sharing whereabouts may either be
prompted by pragmatic purposes or social-driven (Tang et al. 2010; Lindqvist et al. 2011). Purpose-based
location-sharing thereby includes the communication of a location for the purpose of making contact
with other people, whereas social-driven location-sharing includes incentives such as self-expression or
the enhancement of ones’ digital self-representation (Barkhuus et al. 2008; Evans 2011; Quesnot and
Roche 2015). Clearly, the second type of incentives is more selective in the sense that people would not
communicate places that would run counter these goals. The latter has recently been supported by results
from an investigation of 22 qualitative interviews with Foursquare users (Saker 2017). The answers given
suggest that users who are sharing locations are well aware that their behaviours are observed by others.
Respondents also indicated that they carefully select their communicated locations, including those they
do not wish to disclose. Clearly, the act of sharing spatial and place-based information on geosocial media
is far from being unconscious, even though the motivation for doing it is not the purpose of data collection.

The selectivity in communicating whereabouts bears a strong influence on the social imaginary of
places (Taylor 2004; Kelley 2013). It determines which places are mirrored into digital space and how
positive or negative this image appears. In addition, the underlying stack of technologies has an influence
on the representation of places through the designs of the geosocial media platforms, which constrain
how people communicate their whereabouts. For example, because a platform like Twitter is targeted at a
specific group of people and focused on specific purposes, that influences the types of places which are
represented accordingly. Platform design also partially shapes user behaviours through the expectations
that are imposed from the expected target audience. For example, an expectation to present oneself in
a professional, casual or other manner could ultimately lead to Michael Focault’s ‘technology of self’,
where the technology becomes absorbed as part of the ‘self’ but, also shapes the representation of the
‘self’ in the material world in a reciprocal manner (Rzeszewski and Beluch 2017). Closely related is the
so-called ‘code/space’ metaphor (Kitchin and Dodge 2011), whereby code generates space and space
generates code. These arguments lead to the outlined blending of material and digital spaces.
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I.2.4 Technical and Demographic Challenges

The outlined interactions between the design of geosocial media feeds and their influence on behavioural
patterns show how strong the technical sphere shapes social processes. Geosocial media data are therefore
subject to complex challenges making their scientific use difficult. Some of these challenges are of
technical nature. For instance, it is often difficult to disclose the semantics of messages because people
write messages in a colloquial and ambiguous manner (Zappavigna 2012; Sester et al. 2014). Technical
length restrictions and highly sophisticated semantics make it difficult to reveal information by natural
language processing. Further, because geographic regions are not populated evenly, the amount of
information is volatile in space and time (Sester et al. 2014). This leads to a spatially varying number of
messages and may in turn lead to bias in the assessed importance of events and places. Similarly, this
bias may also create the impression of highly redundant data in places where many people post about
similar topics. Some messages might further be of a noisy character and thus of little use for scientific
investigation (Sengstock and Gertz 2012).

Geospatial characteristics also have an influence on the data from geosocial media platforms. Because
most data is available in the form of points, these are technically scale-free (Sester et al. 2014). Therefore,
even though social media data does not provide explicit scales it often conveys implicit ones, especially
when it refers to social or material circumstances. However, these implicit scales are not fixed over time.
Crampton et al. (2013) investigated a Twitter hashtag indicating the victory of the University of Kentucky’s
men’s basketball team in the National Collegiate Athletic Association (NCAA) championship. Over the
course of one evening they found that the scale of the digital representation of this event changed from a
local to the national level, and later moved back to a local level. Thus, the scale at which conclusions
could be drawn about the investigated phenomenon changed drastically, which clearly influenced the
spatial analysis of the respective messages.

In a similar vein, the degree of localness of users and phenomena represented on geosocial media can
differ significantly. Johnson et al. (2016) report that the number of distinctly local users varies between
75% and 88% across the platforms Swarm, Twitter and Flickr. The number of local users is thereby
determined by the size of the white population, youth and the degree of urbanization. The least degree of
localness is observed for contributors of Flickr photos, which seems reasonable because photo-sharing
services are frequently used by tourists. This is supported by findings from Li et al. (2013) who report that
photo-sharing services are more uncertain with respect to the localness of the shared photos. However,
Rzeszewski and Beluch (2017) found that the degree of localness is not consistent across different cities,
whereby some cities are more affected by importing lifestyles from other places, which has an impact on
the interpretation of analysis results obtained from geosocial media data.

The varying degree of localness is related to biases in the types of sampled places and their demo-
graphic compositions. Research on geosocial media feeds is strongly skewed towards data from world
cities like London or New York. These are cultural and social melting pots that, by their very nature,
act in an averaging way (Rzeszewski and Beluch 2017). Heterogeneous groups of people like tourists
mix-up temporarily with the domestic population, making it difficult to disclose local behavioural pat-
terns. Another related kind of digital divide is the under-representation of rural areas on geosocial media
(Mislove et al. 2011; Hecht and Stephens 2014). The literature on findings from conurbations is vast, but
little is known about how people use geosocial media in rural contexts. There are further dividing lines
along demographic characteristics. A majority of geosocial media content is produced by only a small
number of individuals (Haklay 2012) that typically belong to the young, wealthy and educated parts of
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the society, especially to Caucasian and Asian ethnic communities (Li et al. 2013; Longley et al. 2015).
Further, a majority of the contributors is male (Mislove et al. 2011; Longley et al. 2015), although this
bias was reported to be flattening out recently (Mislove et al. 2011). Relevant geographic factors include
landuse classes (Longley and Adnan 2016) and variations at the national level (Mislove et al. 2011). While
these results are largely based on intrinsic investigations that do not take account of external data for
validation, Sloan (2017) report findings from a comparison of a British Twitter dataset to a representative
socio-demographic panel. These results largely confirm the already mentioned results, while the bias
towards younger cohorts seems to be less severe than was suggested by other studies.

While some of the outlined characteristics are valuable for the investigation of subjective momentary
experiences, they clearly have an impact on the data, and thus on obtained analysis results. This includes
spatial analysis, which offers a useful set of techniques for the geospatial characterization of places and
locations. This field is introduced in the next Chapter.





I.3 Spatial Analysis

Figure I.3.1: Dr Snow’s London cholera map—the result of an early example of spatial analysis. The
piled black rectangles indicate the numbers of cholera cases. The figure is reproduced from
a publicly available map from the Department of Epidemiology1, University of California,
Los Angeles, CA.

Dr Snow’s well-known map of cholera cases (Figure I.3.1) is a classic example for motivating the statistical
field of spatial analysis. In 1854, the Soho district of London was hit by a cholera epidemic. It was caused
by contaminated drinking water, which came from public pumps operated by different utility companies.
Dr Snow identified the source of the epidemic by recording all cholera cases on a topographic map. That
map illustrates a range of important topics from spatial analysis, which are also relevant for this thesis.
One of these is the notion of a spatial random variable. The variation in the numbers of cholera cases
on the map (i. e., the piled black rectangles) is influenced by stochastic factors, such as the numbers of
people living in the houses, cholera-related health indicators like population overcrowding, malnutrition,
unhygienic conditions and access to basic medical services (Soto 2009). These random influences show
that Dr Snow dealt with a random quantity generated by a spatial stochastic process, rather than with a
fixed (i. e., deterministic) characteristic of geographic space. Such spatial random variables interact with

1http://www.ph.ucla.edu/epi/snow/snowmap1.pdf, last accessed on 19 September 2017
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Figure I.3.2: Chlorophyll a concentration in the Black Sea as an example of a spatial random field. The
figure is provided by the Plymouth Marine Laboratory2.

their immediate geographic vicinity, which causes them to have an inherent interaction behaviour. This is
evident from the distinctive clustering that is notable on the map in Figure I.3.1. The clustering shows
that the geographic distribution of the cholera cases is not completely random, but follows systematic yet
probabilistic rules. Modern statistics characterizes these rules by the estimation of spatial autocorrelation,
another important spatial analysis concept. Dr Snow did not have such well-defined tools available at his
time. Nevertheless, it was the same characteristic that allowed him to finally disclose the source of the
cholera epidemic, which turned out to be a pump located in Broad Street.

Dr Snow’s map provides an intuitive sense of some key ideas of spatial analysis, the core of which is
the determination of spatial behaviours of random variables by taking account of geographic circumstances.
The following sub-sections introduce some spatial analysis concepts that are important for this thesis in a
concise and technical manner. Further, a connection between this statistical field and geosocial media data
is made.

I.3.1 Spatial Stochastic Processes

Deterministic variables like the positions of a swinging pendulum allow the precise prediction of future
states. However, this is not possible with random variables that are subject to unpredictable influences.
Still, random variables are not entirely arbitrary but described by probabilistic rules. Their behaviours are
therefore oftentimes structured, which allows a prediction of future states with some degree of certainty

2http://www.coastcolour.org/site03_mediterranean_blacksea/MER_FRS_1PNMAP20050405_
082012_000003012036_00107_16193_0001_c2r_chl_conc.jpg, last accessed on 22 September 2017

http://www.coastcolour.org/site03_mediterranean_blacksea/MER_FRS_1PNMAP20050405_082012_000003012036_00107_16193_0001_c2r_chl_conc.jpg
http://www.coastcolour.org/site03_mediterranean_blacksea/MER_FRS_1PNMAP20050405_082012_000003012036_00107_16193_0001_c2r_chl_conc.jpg
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(Everitt and Skrondal 2010, p. 356). Technically speaking, random variables are described by probability
spaces:

Definition. (Probability spaces, random variables) Let (Ω,A, P ) be a probability space where Ω is a
sample space of possible outcomes, A denotes a σ-algebra of events and P is a probability measure over
Ω. Any mapping X : Ω 7→ E is called a random variable, whereby E = (Ω,A) is a measurable space
with respect to P .

The sample space Ω contains all theoretically possible outcomes of a random phenomenon, e. g., the
positive real numbers in case of temperatures measured in Kelvin. The event space A is a so-called
σ-algebra that combines single outcomes into subsets of Ω that can be assigned probabilities. For instance,
in case of temperatures measured in Kelvin, this would include events like “X ≤ 10 K” forming a
half-open interval on the real numbers. The probability measure P : ω 7→ [0, 1] assigns probabilities to
individual outcomes ω ∈ Ω and also allows to assess the probability of events A ∈ A.

When a family of random variables is referenced over an additional structure that allows to sort the
sequence of random outcomes in some way, we call that collection a stochastic process. The structure
over which the variables are referenced (or indexed) is called its index set (Cox and Miller 1977). The
latter can be any arbitrary set endowed with a metric, but in a narrower sense the index set is typically
defined to be a time interval:

Definition. (Stochastic processes) Let (T, d) be a metric space with T being an index set and d being a
metric. Then, a collection of random variables X = {Xt : t ∈ T,X ∈ Ω} is called a stochastic process.
Each random variable Xt ≡ X(t) is bound to one index from the set T . In practice, T often denotes a
time interval [t0, tN ] ⊂ R.

The definition given above is operational in time series analysis, but it is possible to extend the concept
to the spatial case. Let T = R2 be a two-dimensional real-valued index set and let S ⊂ T be a set of
so-called spatial units. Three different kinds of spatial processes can be derived from this (see Cressie
1993; Gneiting and Guttorp 2010): spatial random fields, lattices and spatial point patterns.

Definition. (Spatial random fields) A collection of random variables X = {Xs : s ∈ S, X ∈ Ω} is
called a spatial random field, iff the spatial index set is continuous (i. e., |S| =∞) and fixed (i. e., if it is
not subject to randomness).

Spatial random fields form the conceptual basis for geostatistical investigations, a branch that deals
with spatially continuous phenomena like soil properties or water temperatures. Figure I.3.2 shows
the Chlorophyll a concentration in the Black Sea and thus gives an example of a spatially continuous
phenomenon. This variable is defined at each point of the water surface. The term ‘continuous’ thus refers
to the notion of having a random variable defined at any location of the underlying spatial index. The
figure also demonstrates that the spatial index may be bounded as the Chlorophyll a concentration is only
defined within the bounds of the water body.

Definition. (Lattice data) A collection of random variables X = {Xs : s ∈ S, X ∈ Ω} is called lattice
data, iff the spatial index set is discrete (i. e., |S| <∞) and fixed (i. e., not random). The spatial units in
the index set can be of any regular or irregular shape.

Lattice data is used to model spatially discrete phenomena like election results at the constituency level and
census variables. These are only defined in specific locations in a possibly aggregated form. For instance,
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Figure I.3.3: Net domestic migration within the US counties as an example of lattice data. The figure is
provided by the United States Census Bureau3.

the map in Figure I.3.3 shows the exchange in domestic migration within the American counties. Each
attribute value is bound to a specific county, which are of arbitrary shape and therefore form an irregular
lattice of non-random administrative units. It would not be admissible to interpolate such attribute values
from their lattices to the entire Euclidean geographic space. The migration net balance is only defined
for whole counties, but not for the individual locations within these counties. The analysis of lattice
data is therefore related to the analysis of networks, as each county can be represented by a point and
neighbourhood relations between these counties define a network of regions. Lattices prevail in spatial
regression scenarios and in exploratory/confirmatory spatial data analysis.

Definition. (Marked and unmarked spatial point patterns) A set of spatial units S = {Si ∈ R2 : i ∈ N}
is called a spatial point pattern, iff the spatial units are random variables. In addition, if any arbitrary
random variables Xi ∈ Ω are assigned to these random locations, then the collection of ordered pairs
SX = {(Si, Xi) : Si ∈ S, Xi ∈ Ω} is called a marked spatial point pattern. Like with lattices, the spatial
units can be either regular or irregular in shape.

3https://www.census.gov/content/dam/Census/newsroom/blogs/2015/03/moving-in-the-
usa-domestic-migration-before-and-after-the-recession/blog-graphic-2.jpg, last accessed on
22 September 2017

https://www.census.gov/content/dam/Census/newsroom/blogs/2015/03/moving-in-the-usa-domestic-migration-before-and-after-the-recession/blog-graphic-2.jpg
https://www.census.gov/content/dam/Census/newsroom/blogs/2015/03/moving-in-the-usa-domestic-migration-before-and-after-the-recession/blog-graphic-2.jpg
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Figure I.3.4: Crown locations of sycamore and ash trees in an English woodland, an example of spatial
point patterns (taken from Atkinson et al. 2007).

Spatial point patterns are used in the investigation of geometric arrangements of random spatial units. The
pattern of trees in an ancient semi-natural woodland (Atkinson et al. 2007) as shown in Figure I.3.4 is
one example of a spatial point pattern. The locations of the trees are themselves considered outcomes
of a random process which is influenced by ecological factors, climatic conditions, the seed dispersal
mechanism, and other factors. Further, labels indicating the tree species (ashes and sycamore trees)
may be treated as additional random outcomes assigned to the geometric points as so-called marks (not
shown in the figure). Spatial point pattern analysis thus allows to investigate the spatial configuration of
random geometries and, if marks are available, the interactions between geometric patterns and those in
the attached attributes.

The introduced types of spatial processes conceptualize different types of geographic phenomena. This
thesis focuses on the relationship between geosocial media data and spatial analysis techniques. Times and
locations of the corresponding messages are random, because they are influenced by unpredictable user
behaviours. In combination with attributes assigned to the messages, this gives rise to the investigation
of marked spatial point patterns. Technically, the analysis of spatial relationships within the marks of a
spatial point pattern boils down to the analysis of a lattice (Shimatani 2002). That is, the spatial analysis of
the attribute values is conducted by letting the stochastic marks vary over the sampled locations, which are
held fixed accordingly. The methods that are used to analyze the spatial second-order4 behaviour of such
random variables are summarized by the term mark correlation function, of which different versions exist
(a comprehensive list is found in Illian et al. 2008). All of these assess the statistical associations between
geographically adjacent units, and thus the characteristic of spatial autocorrelation. The next section
introduces this concept as well as those variants of the mark correlation function which are relevant for
the remainder of this document.

I.3.2 Spatial Autocorrelation

Conventional and non-spatial statistics are largely based on the assumption of i.i.d. (independent and
identically distributed) random variables (Durbin 1973; Gaenssler and Stute 1979). This assumption is

4The term second-order refers to the second statistical moment (variance or covariance) (see Illian et al. 2008, 223 ff.).
First-order is used analogously.
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reasonable when samples are taken from controlled experiments without interactions within the samples.
In such cases, the i.i.d. assumption is convenient because it allows to disregard potentially complex rela-
tionships between random variables when drawing inference. The occurrence of dependency structures,
in turn, introduces redundancy and thus reduces the degrees of freedom of statistical estimators. If not
taken into account, this causes an overestimation of statistical effects and, in addition, an obscuration of
characteristics of individual random variables when samples are not identically distributed. These chal-
lenges render the drawing of meaningful and generalizable conclusions difficult in case of systematically
structured and heterogeneous random variables.

Geographical data is not collected in a fully controlled manner but taken from in situ physical and
social contextual conditions (Goodchild 2009). The data is also often aggregated into arbitrary units that
are defined for purposes other than spatial analysis, e. g., in case of census data. Adjacent geographic units
may then be subject to similar contextual influences affecting the phenomenon of interest (e. g., political
conditions or climatic factors). These characteristics inevitably cause redundancy within the related
random variables, which in turn violates the i.i.d. assumption. Even though it is possible to adopt an
appropriate spatial sampling scheme when collecting data (a review is found in Wang et al. 2012b), spatial
dependencies still occur through proactive interaction or other forms of spatial diffusion mechanisms that
are endemic to the underlying data-generating processes. These circumstances motivate the first law of
geography (Tobler 1970; Sui 2004), which states that “everything is related to everything else, but near
things are more related than distant things” (Tobler 1970, p. 236). This heuristic rather than rigorous law
is statistically quantified by the concept of spatial autocorrelation, which features prominently in the field
of spatial analysis.

Spatial autocorrelation is a second-order characteristic that describes the spatial interaction behaviour
within random variables (Fischer and Getis 2010b). A range of different estimators exist (see Getis
2007; Getis 2008): the covariance-based Moran’s I and Geary’s c (Cliff and Ord 1969), the spatial
autoregressive coefficients ρ and λ (Anselin 2001), or G*

i (Getis and Ord 1992; Ord and Getis 1995) which
emphasizes structures within extremal values. These estimators evaluate the spatial interaction behaviours
within random variables but are used in different application scenarios. These include the assessment
of influences of distance effects, of the roles of geometry and topology, or of the impact that individual
geographic features have on spatial processes (Getis 2007). In this thesis, two estimators of particularly
high academic and practical interest are investigated in more detail: Moran’s I and G*

i.
Moran’s I (Moran 1950; Cliff and Ord 1969) is one of the most frequently applied measures of

spatial autocorrelation. It estimates the normalized spatially-weighted covariance within random variables,
whereby it takes account of geographic structures by incorporating a so-called spatial weights matrix.
Spatial weights define the fixed geographic structure connecting those spatial units si ∈ S upon which
the investigated phenomenon is believed to operate (Bavaud 1998; Getis 2009; Harris et al. 2011). For
instance, in an investigation of commuting processes it may be useful to utilize the numbers of major
traffic routes between administrative units, while in an epidemiological analysis it might be more useful to
adopt physical contiguity as an appropriate spatial weighting scheme. Using Moran’s I as a test statistic
allows the investigation of whether the modeled geographic layout plays a significant role in the structure
of an attribute, and thus if geographic factors are major drivers of interactions within the analysed random
variables. Moran’s I is widely used because it has several advantages over other test statistics. For
example, it has higher statistical power, is less affected by attribute outliers, and is more robust against
configurational outliers in the spatial layout than Geary’s c (Chun and Griffith 2013).
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Definition. (Moran’s I) Let cov(Xi, Xj) be the covariance between the spatial random variables X =

{Xi} at locations i and j. Moran’s I is an estimator of the normalized spatially-weighted covariance
(i. e., of spatial autocorrelation). It takes account of pairwise relationships between spatial units by using
a spatial weights matrix W = (wij). The global form of Moran’s I which averages the overall spatial
autocorrelation in a region is defined as

I =
n∑n
i,j wij

·
∑n

i,j wij(xi − x̄)(xj − x̄)∑n
i (xi − x̄)2

, (I.3.1)

where n is the number of spatial units and x̄ denotes the average of the observed attribute values. By
analogy, the local version of Moran’s I allows to disaggregate the global measure into its local constituents,
and makes it possible to estimate and map local structures. It is defined as (Anselin 1995)

Ii =
xi − x̄

1
n ·
∑n

j (xj − x̄)2
·
n∑
j 6=i

wij · (xj − x̄). (I.3.2)

A second estimator used in this thesis is G*
i (Getis and Ord 1992; Ord and Getis 1995), which assesses

spatial structures within the tails of an attribute value distribution. Significant structures in the left tail
(i. e., within low values) are called cold spots, whereas structures in the right tail are called hot spots,
which is why G*

i is often referred to as a hot-spot statistic. Its distribution is asymptotically normal in the
null hypothesis, regardless of the distribution of the investigated random variables (Zhang 2008).

Definition. (Hot spot statistic G*
i) The measure G*

i is an additive indicator of spatial autocorrelation in
the tails of the attribute value distribution of spatial random variables X = {Xi}. Similar to Moran’s I,
it takes account of geospatial relationships between spatial units i and j by using a spatial weights matrix
W = (wij). The global measure that averages the extreme-value accumulation is defined as

G =

∑n
i,j wij · xixj∑n

i,j xixj
, j 6= i, (I.3.3)

with n being the number of spatial units. Two local versions of Equation I.3.3 exist. These are called Gi

and G*
i and they are almost identical with the only difference between them being that Gi omits the local

observation i in the estimation. Therefore, only the definition of G*
i is given here:

G∗i =

∑n
j wij · xj∑n

j xj
. (I.3.4)

The considered measures of spatial autocorrelation assume uniformity in the investigated random
variables in their null models (Tiefelsdorf 1998). This statistical uniformity is called stationarity, of
which there are various types of different strengths. An additional and related spatial concept is spatial
heterogeneity, which refers to varying statistical parameters.

I.3.3 Spatial Heterogeneity and Stationarity

Spatial heterogeneity describes geographic non-uniformity within spatial random variables (Dutilleul and
Legendre 1993). In the empirical sciences, it refers to mixtures of different processes like they are found
in transitional ecological habitats (e. g., in-between aquatic and terrestrial habitable conditions; Turner
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1989), or to an uneven distribution of a single process (e. g., in case of malaria infectivity; Santos-Vega
et al. 2016). Spatial heterogeneity then describes the coexistence and interaction of variegated processes
and is often used synonymously with general diversity. Different types of heterogeneity are characterized
by their causal origins, maintenance mechanisms, and dynamics (Strayer et al. 2003), as well as by their
structural types (e. g., fuzzy vs. crisp boundaries; Jacquez et al. 2000). Apparently, no consensus exists on
the exact meaning of spatial heterogeneity in the empirical literature.

Spatial statistics distinguishes different orders of spatial heterogeneity in statistical parameters (Kolasa
and Rollo 1991; Dutilleul and Legendre 1993). First-order heterogeneous processes have a spatially
varying mean and second-order heterogeneity relates to unstable variance. First-order heterogeneity
appears as a trend if the observation scale does not match the scale of the observed phenomenon. In
contrast, if multiple processes are observed at small scales, the region appears patchy forming spatial
regimes (Anselin 1988b; Camara et al. 2004). The local versions of spatial autocorrelation measures
introduced in Section I.3.2 can be used to disclose heterogeneity. While G*

i allows to investigate varying
means, local Moran’s I is a measure of second-order heterogeneity in the covariance. In addition, Ord
and Getis (2012) put forward a measure called Local Spatial Heteroscedasticity (LOSH) which allows to
characterize heterogeneity in the variance, and is used in this thesis alongside G*

i and Moran’s I.

Definition. (LOSH) Let x̄j be a local spatially weighted mean and ej be a residual about x̄j . h1 is then
the global average of the local residuals ej and LOSH is given by

Hi =

∑n
j wij · |ej |a

h1 ·
∑n

j wij
, ej = xj − x̄j ,

x̄j =

∑n
k wjk · xk∑n
k wjk

, h1 =

∑n
j |ej |a

n
.

(I.3.5)

One reason for spatial heterogeneity is the absence of stationarity, which describes the uniformity
of statistical parameters in data generating processes. Different types of the concept exist which are
discriminated by their degrees of restrictiveness (Cressie 1993; Oliver 2010). The strictest variant is strong
stationarity, which requires all random variables to be drawn from the same distribution regardless of their
absolute locations. This is equivalent to a static world with homogeneous contextual conditions and thus
a too strong and unrealistic assumption for geographic data. The statistical measures considered in this
thesis presume so-called second-order stationarity (Cliff and Ord 1981; Zimmermann and Stein 2010,
p. 42). This concept requires all moments up to the second order to be constant, while skew, kurtosis and
higher-order moments are allowed to vary geographically. The covariance reduces then to a function of
distance, assuring a consistent spatial autocorrelation function in null models of spatial statistical tests.

Definition. (Second-order spatial stationarity over finite spatial indexes) Let S be a finite set of n
discrete spatial units. Further, consider the set X = {Xs : s ∈ S, X ∈ Ω} of spatial random variables.
Let s, s1, s2 ∈ S and E[X2

s ] <∞ for all s. Then, the process is second-order stationary if

E[Xs] = µ, V ar[Xs] = σ2,

Cov[Xs1 , Xs2 ] = σ2 · C(‖s1 − s2‖),
(I.3.6)

where C(·) is a correlation function and ‖·‖ denotes the Euclidean norm. Second-order stationarity thus
requires a constant mean and variance. It follows that the covariance between any two spatial units is
only a function of (not necessarily Euclidean) distance (Zimmermann and Stein 2010).



I.4 Scientific Contributions

The main results to answer the research questions from Section I.1.2 are given in the following and their
relevance and limitations are discussed. All results discussed are laid out in detail in Part II, where the
accompanying publications are attached as individual chapters. In all following subsections, the achieved
key findings are highlighted in bold font before they are briefly discussed.

I.4.1 Research Question 1

Research question 1 examines how scale and topological characteristics of spatially superimposed
heterogeneous random variables influence the hot-spot estimator G*

i and the autocorrelation measure
Moran’s I. The results given here are based on Chapters II.1, II.2 and II.6, which correspond to Westerholt
et al. (2015), Westerholt et al. (2016) and Westerholt (2018).

RQ 1.1: Impact of co-occurring spatial scales on hot-spot estimation

Two objectives are pursued to investigate the influence of scale-related characteristics of spatially super-
imposed and heterogeneous random variables on hot-spot estimation: (i) a better understanding of the
scales included and of related statistical data characteristics is achieved by analysing two Twitter datasets;
(ii) the impact of overlapping scales on results of G*

i and on conclusions drawn on hot-spots is examined.

Geosocial media data contain different scales in a spatially commingled way. The results obtained
show that spatial lags1 of geosocial media data are heterogeneous. Five different analytical scales are
applied and on each of these, 70–90% of the included observations interact on scales beyond the respective
range of interest. Additionally, small spatial scales dominate the constructed spatial lags in such a way
that the smallest two of the investigated scales account for more than 40% of all comprised observations.
Taking account of the attribute values (here: semantic similarities) further reveals that the proportion of
attribute values contributed by the smallest-scale observations exceeds their quantitative share by up to
80%, suggesting that small scales are strongly overvalued. Therefore, it is difficult to recognize significant
hot-spot patterns on larger scales from the geosocial media data examined without being influenced by the
smallest contained scales.

Hot-spots are frequently misinterpreted or remain undetected when scales co-occur in spatially
superimposed data. Application of G*

i to Twitter data confirms the observed bias towards small scales.
In the obtained results the number of significant hot-spots increases strongly with the analytical scale
(see Figure I.4.1). This is caused by pronounced small-scale observations, many of which are falsely
included on coarser analytical scales due to the additive nature of G*

i. An investigation of the means of
standardized G*

i values on different scales supports this observation by a positive trend. As a result, the
null hypothesis is rejected too often at large scales because significant hot-spots from smaller scales are
propagated to larger-scale inferences, causing type I error inflation (i. e., false-positives). Type II errors
(i. e., false-negatives) are in turn observed on small analytical scales when large-scale observations with

1A spatial lag quantifies the spatial neighbourhood of a random variable.

27
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Figure I.4.1: A series of z-scores from applying G*
i on different scales; based on Figure II.1.6.

low attribute values are located next to small-scale observations. This then diminishes potential hot-spot
patterns, resulting in the overlooking of effects.

Small-scale hot and cold-spots constrain large-scale inferences. The applied G*
i estimator overestim-

ates either significant hot-spots strongly, or the effects remain undetected. One reason for this is that
the G*

i values obtained on different scales are not mutually independent. Similar to the well-known
multiple hypothesis testing problem that occurs with local statistics (Caldas de Castro and Singer 2006;
Nelson 2012), superposition introduces spurious dependencies between scale levels. These dependen-
cies constrain the possible interpretations of hot and cold-spots, because smaller-scale information is
propagated into larger-scale inferences. Just like multiple hypothesis testing requires correction to avoid
type I error inflation, the obtained results suggest that the scale-related dependency structures introduced
by superimposition must be additionally controlled to ensure correct hot-spot interpretations. Another
difficulty in interpreting hot-spots is the complex interaction of type I and type II errors. Some local
arrangements make existing patterns appear weaker than they are, while effects are overestimated in other
situations. However, there is a non-trivial interaction between these situations that impacts the statistical
power of G*

i and deserves further investigation in future research.

RQ 1.2: Effects of falsely but strongly connected units on estimating spatial autocorrela-
tion from spatially superimposed data

The estimation of spatial autocorrelation from random variables is influenced by their topological ar-
rangement and how they are connected to each other. Research question 1.2 addresses the impact of
unfavourable arrangements caused by superimposition on the spatial autocorrelation measure Moran’s I.
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Figure I.4.2: Two maps of local eigenvalues and their spectra obtained for a single and a superimposed
pattern; based on Figures II.2.4 and II.2.5.

Three analyses are performed with a Twitter and a synthetic dataset: (i) semivariances and autocovariances
are estimated to investigate cumulative variability effects; (ii) the eigenvalues of different spatial weighting
schemes are analysed to assess the influence of superimposed geographic layouts on Moran’s I; and (iii)
Moran scatter plots are used to decompose Moran’s I for a clear identification of topological effects. In
addition, the effect of statistical differences between superimposed processes is investigated by analysing
20.000 configurations of normal attributes with differing means and variances.

Estimating spatial autocorrelation with spatial superimposition suggests non-existent patterns.
Semivariance describes the variance on distance bands and allows to investigate cumulative topolo-
gical effects. The estimated semivariances show a maximum over short spatial distances, pointing to a
high degree of diversity in geographically close random variables. Further, the trend in the semivariances
has an initial negative slope, which quickly levels out to the general overall variance. In non-superimposed
datasets, that slope is typically positive (the ‘first law of geography’, cf. section I.3.2). To better understand
their unexpected shape, the semivariances are broken down into pairwise spatial autocovariance terms.
This reveals an accumulation of autocovariances close to zero over short distances, which confirms the
local heterogeneity from the semivariances. Two further peaks are noteworthy: one reaches into the
positive values (clustering), and another goes into the negative values (repulsion). Positive, negative and
neutral spatial associations thus occur together, rendering an intuitive ad hoc interpretation of the trend of
the estimated semivariances in the sense of negative spatial autocorrelation problematic.

Strongly interacting spatial units existing in the superposition area of different processes change
the distribution of spatial autocorrelation statistics. The eigenvalues of spatial weights matrices (which
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determine the potential for interaction between units) provide a detailed understanding of how the connec-
tedness in a spatial layout influences spatial autocorrelation. Figure I.4.2 gives the eigenvalues for spatial
weights obtained for the synthetic data. The non-superimposed points show a homogeneous eigenvalue
pattern, meaning that each spatial unit contributes equally to the estimation of spatial autocorrelation. In
contrast, the superimposed eigenvalue pattern is diverse with simultaneous high and low values, whereby
strong eigenvalues occur for those units that interact across the two superimposed patterns. These units
increase the variability in the eigenvalue spectrum, which influences the range of possible Moran’s I
values and stretches and changes their distribution (Tiefelsdorf and Boots 1997; Tiefelsdorf et al. 1999).
The interaction between the superimposed patterns thus has a strong influence on spatial pattern disclosure.
Inferences drawn about Moran’s I are then biased and have lower statistical power, in particular when
utilizing normal theory as derived under the central limit and the Pitman-Koopman theorems (Cliff and
Ord 1973; Cliff and Ord 1981).

Several possibly contrary spatial processes are incorrectly identified in superimposed data. Moran
scatter plots allow the decomposition of Moran’s I into its parts. Even though only one spatial pattern
exists in the synthetic superimposed data, the scatter plot reveals three different spatial processes. One
of these reflects the actual spatial interaction in the data and shows a positive slope in the regression
line (both combined patterns are autocorrelated at I = 0.81). In addition, another spurious positive and
a negative sloping line appear, representing interactions between the two processes involved. Each of
these lines is associated with one of the scales of the two processes. However, if not sorted out explicitly,
they are included in the characterization of the overall spatial interaction behaviour of the analysed data.
Setting these components into relation with the eigenvalues outlined above further shows that the two
components behave in opposite directions when the eigenvalues increase. However, in both cases their
influences become stronger, showing the strong effect of spatial superimposition on the interpretation of
spatial patterns.

Superimposed mean values of different intensities change the interpretation of Moran’s I estimates.
With regard to statistical differences, the determined strength of spatial autocorrelation is underestimated
with strongly differing mean values if the overlapping patterns are spatially random, i. e., if these are
themselves not spatially autocorrelated. In contrast, the degree of underestimation of spatially structured
overlaid patterns additionally depends on the geometric scale associated with the stronger of the mean
values involved. Therefore, dominant large-scale patterns cause stronger underestimation, and the rate at
which these effects become operational is faster than with dominating small-scale patterns. The effect of
differing mean values thus leads to a misinterpretation of the magnitude of spatial patterning in data.

Different attribute variances in superimposed random variables increase the uncertainty of spatial
autocorrelation estimates. The uncertainty in the estimation of Moran’s I increases, when the variances
of overlaid attributes differ. This effect is similar for both, spatially random and spatially structured
overlapping patterns. Also, with respect to the scales of the involved patterns, the influence of differing
variances is symmetric. It makes no difference whether the larger or the smaller-scale pattern dominates
in terms of dispersion. The variance impact becomes effective quickly, meaning that even small variations
cause rather strong increases in the range of Moran’s I values. What is further noteworthy is that variance
deviations in general lead to a prevalence towards larger Moran’s I estimates. That is, while mean
deviations cause underestimation, differences in the involved variances may counterbalance the impact of
the means. This finding adds to the counterbalancing effects detected for the different jointly occurring
spatial processes in the Moran scatter plot. It suggests that, when both effects appear simultaneously, their
impacts might become even stronger.
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RQ 1.3: Joint impacts of scale and misspecified spatial weights on spatial autocorrelation

Research question 1.3 focuses on the joint influences of the systematic scale and topological effects re-
vealed in RQ 1.1 and RQ 1.2. Nine-thousand random point patterns, each containing two differently scaled
sub-patterns, have been generated that mimic different interaction scales, various types of superpositions,
and two different attribute dispersal mechanisms. These patterns are investigated in two regards: (i) the
numbers of interactions between differently scaled patterns are analysed to determine the extent to which
these interact; (ii) the impact of scale differences and related topological effects on Moran’s I is assessed.

The number of spatial interactions possible between overlapping patterns is constrained by their
scale differences and the adjusted analytical scale. Two scenarios are investigated in this regard: one
using a fixed degree of geometric overlap, with this condition being abandoned in the second case studied.
The adjusted analytical scale turned out to be unimportant when the degree of pattern overlap is kept
constant. Small scale differences between the jointly analysed patterns lead to high numbers of interactions
in this case. This number declines at an exponential rate and levels out to a low figure as the differences in
scale become greater. The latter convergence happens because few points from one sub-pattern interact
with only few of the other. In contrast, letting the degree of overlap vary causes the interaction behavior to
be highly dependent on the analytical scale used. On small analytical scales, the frequency of interactions
remains high even when the sub-pattern scales differ strongly. In this case, many observations from a
small-scale process interact with few large scale points, meaning that the disclosure of spatial structures
is then dominated by relatively few and eventually extreme cross-pattern interactions. Contrarily and
by analogy to the case of fixed geometric overlap, the frequency drops exponentially on large analytical
scales. The spatial analysis of superimposed random variables is hence very sensitive to the combination
of differently scaled spatial patterns and how these are arranged relative to each other. Scale differences
between overlapping patterns thus determine to what extent the other disruptive factors (e. g., statistical
influences) described above can become effective.

Scale differences influence the characteristics of the processes incorrectly identified in spatially
superimposed data. Interactions reflecting the actual pattern in the data do only provide reliable estimates
of Moran’s I when the involved scales of contained sub-patterns are almost similar. Very quickly, the
autocorrelation drops notably causing Moran’s I to be underestimated. This is an important finding,
because the scales of combined patterns are very likely to vary marginally in practical scenarios. However,
over large parts of medium scale differences, spatial autocorrelation tends to be overestimated, before
it drops again and finally converges to a state of underestimation. In contrast, the superimposition-
related false interactions between the involved patterns behave different. These contribute a positive
additive component to Moran’s I on small and moderate scale differences. When the scale differences are
stronger, their contribution turns to chaotic behaviour making interpretations of disclosed patterns difficult.
Estimating Moran’s I from superimposed data thus leads to unreliable and often highly unpredictable
outcomes. In summary, Moran’s I is estimated close to correct if the involved scales are almost similar. In
contrast, Moran’s I is underestimated at small scale differences, overestimated if scales differ moderately,
and it shows unpredictable behaviours at large scale differences through chaotic inter-scale effects.

I.4.2 Research Question 2

Research question 2 puts forward novel methodological routines for the spatial analysis and characteriz-
ation of spatially superimposed and heterogeneous random variables. One proposed method is a novel
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spatial hot-spot estimator based on G*
i, which explicitly considers the spatial coincidence of different

scales in local neighbourhoods. The second contribution is a local statistical test about the influence of
spatial arrangements on the variance under non-stationary conditions. These methods are laid out in detail
in Chapters II.1 and II.3, which conform to Westerholt et al. (2015) and Westerholt et al. (2018).

RQ 2.1: A hot-spot estimator for spatially superimposed random variables

Research question 2.1 addresses hot-spot estimation from superimposed random variables by proposing
two contributions: (i) A novel approach to spatial weighting is presented that differs from available ones
in stratifying neighbourhoods with respect to the contained interaction scales. In addition, (ii) a novel
hot-spot estimator allowing to disclose hot-spots on different scales in a separated manner is derived.

Geometric and topological criteria allow to extract information on relevant scales from spatial
neighbourhoods. A two-step procedure is put forward to derive spatial weights for superimposed random
variables: a circular boundary is drawn first around each spatial unit, whose distance threshold corresponds
to the geometric range of the analysed process. All pairwise relations between the contained random
variables are then examined to assess whether these are located on the scale at which the analysed
process is assumed to interact. The derived weighting scheme thus forms a hybrid approach incorporating
geometric (the circular boundary) and topological principles (the relative placement of spatial units) that
allows to stratify local neighbourhoods into various distinct but geometrically overlapping parts. Certain
scale ranges can be switched on and off which can then be evaluated separately. In summary, whereas
conventional available spatial weighting schemes assume neighbourhoods to be internally coherent without
the need to further sub-stratify them, the introduced approach contributes a scheme for the case of spatially
non-exclusive geographic random variables.

Hot-spots can be disclosed separately on different scales by consistently limiting all stages of the
statistic to relevant scales. A modified version of G*

i called GS*
i is derived and its first two moments

are determined. In GS*
i, the normalizing denominator takes account of the existence of different spatial

scales through evaluating a binary vector indicating scale fit. The original method takes no account of
different scales and uses a constant denominator which is based on all data available. In addition, the
numerator of GS*

i is integrated with the proposed weighting scheme. This allows to sort out irrelevant
information, but requires a correction in the degrees of freedom. Finally, expressions for the mean and
variance of GS*

i are derived which are constrained to relevant scales, too. The finally proposed measure is
presented as an asymptotically normal z-score, which facilitates convenient inference and interpretation.
The presented measure makes it possible to evaluate hot-spots on different scales in an isolated manner
and thus to disclose otherwise undetectable phenomena.

Hot-spot detection is more reliable when it is constrained to relevant scales. The application of G*
i

and GS*
i to a Twitter dataset demonstrates the usefulness of GS*

i for this type of data. While the mean
value of G*

i shows a strong positive trend on larger scales, the trend line for GS*
i is flat and remains close

to zero, which is the expected behaviour for z-scores. The maps in Figure I.4.3 further show that GS*
i

allows a better identification and separation of spatial hot and cold-spots on different scales. The diverse
central business district (CBD) of San Francisco appears as a strong cold-spot2, while the Asian quarter in
the northern part features a prominent hot-spot representing Chinese New Year celebrations. In addition,
small hot-spots appear in central neighbourhoods (e. g., a college campus) on the largest analysed scale,
while others are only present on smaller scales (e. g., a secondary school in the north). These phenomena

2The attribute studied is semantic similarity.
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Figure I.4.3: GS*
i scores obtained on different scales; based on Figure II.1.6.

are either undetectable with G*
i (type II errors), or remain dominant features throughout most analytical

scales (type I errors). G*
i thus shows a high number of false positives on large analysis scales with 33.56%

of all random variables being flagged significant. This is not the case with GS*
i, which evaluates 3.77% of

all observations as significant and thus comes close to the specified error probability of 5%.

RQ 2.2: Testing relationships between spatial arrangements and the local variance

Spatial superposition affects the geospatial arrangement of random variables, which in turn influences
their variability. To better understand geospatial mixtures of processes and how places are organized
spatially, a statistical test about the relationship between spatial arrangement and the variance has been
proposed. This test statistic is based on two principles: (i) it only makes use of local information to permit
global spatial heterogeneity; and (ii) it includes a strictly local inferential framework. These principles
allow for assessing whether the way how random variables are arranged geospatially reduces or increases
the variance in a certain location, or whether these two characteristics are unrelated.

Local dispersion analysis allows to test the impact of spatial arrangement on the local variability.
The proposed measure called Local Spatial Dispersion (LSD) makes it possible to test the influence of a
spatial pattern on the local on-site variability without being influenced by the overall geographic variance
distribution. In contrast, Local Spatial Heteroscedasticity (LOSH), a recently proposed technique from
which LSD is derived, reveals hot-spots of variability that stand out in a global comparison, but fails to
detect entirely local variance structures that do not appear to be outstanding globally. The key technical
difference to LOSH is that LSD compares estimated residuals about local, spatially-weighted mean values
to their own local averages, whereas LOSH incorporates the global average of these residuals in local
comparisons. This way, LSD assesses the entirely local impact of spatial arrangement on the variance
without taking reference to the dispersal behaviour in other locations. It is thus possible to detect and
characterize how the local geospatial layout affects the variance even in locations that are identified as
globally non-significant by LOSH.

Local inferences and the prediction of additional synthetic data increase the reliability in testing
for local spatial dispersion. The inferential framework introduced for LSD permits second-order spatial
heterogeneity by using local randomization. However, drawing inferences locally comes at the cost
of basing decisions on sparse information from potentially small neighbourhoods leading to unreliable
reference distributions. To overcome this issue, the proposed solution includes a Bayesian framework for
predicting additional synthetic local mean values. Additional local residuals can then be estimated about
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these means, making it possible to calculate a local bootstrap from any number of Monte Carlo replications.
In a first step, the global statistical information is assessed from all available local, spatially-weighted
mean values to derive their averaged prior distribution. The local information from the neighbourhood
in question is omitted in this step to prevent a double use of data. The prior is then combined with local
information to adapt the initially constructed distribution to local conditions. This approach has two
advantages: the global prior reduces the risk of local overadaptation to eventually extreme observed
situations, whereas the use of local information avoids strong global averaging and leads to a more realistic
depiction of local dispersal behaviours.

Joint evaluation of LSD and LOSH reveals a detailed spatial variance characterization. The joint
application of LSD and LOSH to a LiDAR-derived dataset of height differences in an Alpine meadow
makes it possible to disclose features that cannot be detected by using either measure alone. For instance,
a haystack is discriminated from another area of high variability generated from fence posts through taking
account of locally (LSD) and globally relevant (LOSH) variance characteristics simultaneously. Both
are outstanding global features, but their internal diversities differ: the haystack is locally homogeneous,
whereas the fence posts cause fluctuation. Further, the joint assessment of both measures also allows the
variance structure of a global dividing line between a mown and an unmown part of the meadow to be
characterized in great detail. The internal structure of this boundary is homogeneous at its centre, but gets
more diverse and fuzzy towards its edges. This finding cannot be obtained by using either measure alone,
because the local internal structures are not remarkable globally and the solely local variance behaviour
does not provide a comprehensive characterization. By analogy, further features could be revealed and
characterized. This shows two things: Evaluating both measures jointly allows to characterize the local
structures of global features. It is also possible to identify local features that would otherwise go unnoticed.

I.4.3 Research Question 3

Research question 3 reviews the role of spatial analysis in studies that use geosocial media data. Two
contributions are made: (i) The areas of application and the general strategies applied in the spatial
analysis of geosocial media data are explored. Further, (ii) the impact of conceptual and institutional
shortcomings on empirical spatial studies are identified and discussed. The outcomes summarized here
are based on Chapter II.5 which corresponds to Steiger et al. (2016c).

Geosocial media data are commonly aggregated geographically before their spatial analysis. Most
available studies that use geosocial media data are conducted on regional or coarser geographic scales.
Individual social media messages are thereby aggregated into areal units like census tracts, administrative
areas or grid cells. Fields where this is prevalent are the analysis of collective human dynamics (e. g.,
commuting behaviours), delineations of socially coherent living environments, and the detection of
physical urban structures. Oftentimes, the choice for geographic aggregation is made for pragmatic
reasons. For instance, when using additional information like census data or socio-economic indicators,
these are usually only available in aggregated form or measured at coarse scales. Such additional covariates
are frequently used for finding similarities with established datasets, which is done because the majority
of studies still investigate the potential of geosocial media data for empirical research. This goal partially
explains the need for aggregation. Another reason is that, at smaller scales, required knowledge about
the scales of phenomena or their form of associations in space is often lacking. An extensive literature
therefore exists on findings on coarse scales, while very little is known about non-aggregated geosocial
media data on local scales.
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Analysis of unaggregated geosocial media data is rarely conducted explicitly spatial. Some studies
do analyse unaggregated geosocial media data. Typical domains for this are event detection, geo-social
network analysis or the investigation of sentiments and emotions. However, the processes investigated
are oftentimes unknown and analyses are exploratory in nature. Knowledge about appropriate spatial
parametrization is then lacking and the technical issues discussed for RQ 1 and RQ 2 hamper the
achievement of thorough insights about the spatial behaviour within individual messages. As a result, the
individual messages are treated in a spatially isolated fashion—for instance, when assigning the messages
emotional scores without taking into account their geographic context and relations. Therefore, spatial
analysis is often reduced to the mapping of non-spatial results, whereas more complex spatial patterns
remain undetected.

Analysis of geosocial media is often carried out in non-spatial disciplines. Beyond the technical issues
discussed above, another noteworthy observation is that most geosocial media analyses are performed
by scholars from non-geographic backgrounds. For instance, computer scientists have a strong record in
event detection and the spatial analysis of linguistic patterns is a major focus of computational linguists.
However, these researchers are often unaware of the importance of accounting for spatial associations
(with respect to both technical and substantial implications) when it comes to the analysis of spatial
random variables. A stronger interdisciplinary effort between geographers and researchers from other
empirical disciplines is therefore needed and could help overcome this discrepancy.

I.4.4 Research Question 4

The appearance of superimposed and heterogeneous random variables is not limited to user-generated
geographic content. They also appear in survey research where a novel paradigm called event sampling
method (ESM) provides an event-driven approach to collect surveys in situ. The following paragraphs
draw parallels and reveal differences between the characteristics of geosocial media data and ESM survey
responses. A detailed elaboration is found in Chapter II.4 according to Bluemke et al. (2017).

User-generated and scientifically collected in situ random variables share technical challenges. Like
geosocial media data, ESM responses are collected from contextual conditions. The latter are partly
reflected in the samples and influence the collected contents. In addition, the contributions express
the idiosyncratic spatial concepts used by the respondents. The resulting data are therefore inherently
heterogeneous and of limited intersubjectivity. In addition, people assign different meanings to similar
places and processes, leading to the collection of phenomena that appear more diverse in the data than
they really are. This means that, even though ESM responses are more structured through the use of
predefined questions, many of the issues identified in this thesis for geosocial media do also apply for
this kind of data. ESM responses and geosocial media feeds are thus very similar and give rise to a joint
methodological effort by geographers and psychologists.

Different forms of superimposed, heterogeneous random variables exist. The data collection of ESM
responses and the goals in their analysis differ from those of geosocial media data. The latter is collected
in the vein of the humans-as-sensors concept, whereby the premise is that people sense their immediate
environments and publish this information. In contrast, ESM responses are used to collect information
about individuals while they are influenced by their momentary spatial contexts. Geosocial media analysis
thus focuses on space and place, whereas these are treated as contextual covariates in case of ESM
responses. For this reason, the data acquisition schemes used are different: Geosocial media uses a liberal
scheme of unprompted messages and makes only few constraints about the collected contents. In contrary,
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ESM is based on a structured survey approach with pre-defined questions and spatial triggers to ensure a
controlled contribution of the responses. ESM is therefore less affected by the self-selection bias, which
is a serious problem with geosocial media data, as the collected samples then constitute an insufficient
representation of the analysed processes. However, ESM-based responses are in turn affected stronger
by the individual spatial capabilities of the surveyed persons. These include potentially biased distance
estimates, insufficient local spatial knowledge, or disturbing external influences. In summary, while many
technical challenges are similar, the issues in terms of content and interpretation are different. This shows
that the notion of spatially superimposed and heterogeneous random variables is a largely technical one in
the first place and that different kinds of these variables exist.

I.4.5 Limitations

Even though the obtained findings are generalizable, limitations exist in the applied research design that
narrow the scope of the drawn conclusions. These restrictions are organized contentwise:

Spatial and temporal limitations

One limitation of the results is the spatial focus of the work and that time is not considered. This deliberate
decision is made for the sake of clarity in the drawn conclusions. The impacts of superposition on either
dimension—space and time—are both not yet well understood. Their joint investigation would therefore
hamper the interpretation of disclosed findings, making it difficult to separate spatial from temporal
superposition effects. For this reason, all obtained results are interpreted in a solely spatial manner. In
addition, the applied concept of geographic space is constrained to a Euclidean notion. Non-Euclidean
concepts exist in geography, but the choice of an appropriate concept requires considerable knowledge
of the investigated phenomena. The everyday phenomena represented in geosocial media are not well
understood, which is why the more conventional Euclidean approach is chosen here. However, while the
idea of straight-line distance is intuitive, other types of geographic associations might be reasonable too
and could lead to additional complementary insights. Based on the decision to work with the Euclidean
vector space, the modeling of geographic relations is limited to distance decay effects. This weighting
scheme reflects the first law of geography in an intelligible way, but a plethora of other spatial weighting
schemes is available that could unveil differing results, though the general characteristics revealed should
remain similar.

Statistical limitations

With regards to statistical configurations, it is of note that only certain statistical characteristics have been
investigated. For instance, the synthetic data used is populated with normally distributed attribute values.
These are then tested for interactions with geometric and topological factors, as well as with regard to
different mean-variance combinations. However, different statistical populations are likely to occur in
reality, including their combinations in the form of mixture distributions. All obtained conclusions are
therefore interpreted conditional on the chosen statistical setups. Similarly, with respect to the generated
statistical point patterns used for answering RQ 2, the generative mechanism for constructing the employed
patterns is based on a random walk procedure. However, different kinds of geometric point dispersal
appear and these could reveal further interesting outcomes that could not be investigated in this work. In
the same vein, the ways to overlay different point patterns could also be varied further. Most of these
limitations are caused by the necessity to control statistical parameters in order to facilitate the clear
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interpretation of the experimental results. Varying all parameters at the same time would hamper this
endeavour, which is why the laboratory-like and idealized synthetic data was used.

Methodological limitations

This thesis focuses on the investigation of the impact of spatial superposition on selected methodologies.
These methods include Moran’s I, G*

i and LOSH, which were chosen for their relevance to practical
scenarios and empirical research. Even though most other estimators of spatial autocorrelation (e. g.,
Geary’s c) should behave similar (these form a common family of special cases of the Mantel test; Hubert
et al. 1981; Getis 2010), the likeness of such results is not guaranteed. Separate investigations including a
comparison with the results obtained here could shed light on the actual transferability of the achieved
scientific contributions. Another constraint related to the choice of methods is the limitation to real-valued
attributes. Spatial patterns can also be assessed within other statistical data types, such as categorical and
integer random variables (e. g., dichotomous variables like gender, or counts). The set of methods and
their distributional characteristics are different in these cases, and the impacts of topological outliers, scale
differences and other effects might differ from those disclosed here. Further, in terms of the presented
novel methodological approaches, it is noteworthy that the derived GS*

i hot-spot estimator is based on
the assumption that scales are geometrically separable within superimposed point sets. This is clearly a
strong and restrictive assumption, partly based on the choice of spatial weights outlined above, which
literally moves the problem of inseparability from the attribute space to the geometric domain. Even
though the experimental results are promising, there might be cases where GS*

i might not perform well.
Similarly, the presented LSD method uses global prior knowledge and local information both in equal
parts, which may not be generally suitable in all possible use cases.

Scope restrictions

The most profound limitation in the scope of the obtained results is their restriction to user-generated
data collected from liberal and unmoderated acquisition schemes. This implies that users are free in the
choice of locations, times and contents of their contributions. Other forms of user-generated geodata that
also represent the everyday behaviours of people include check-ins or shared photos. These are more
constraint and likely to show other statistical and spatial characteristics. Therefore, the results presented
are not trivially on-by-one transferable to these types of data. By analogy the discussion of the role of
spatial analysis techniques in previously conducted analyses of geosocial media content is limited to
certain selected fields (human mobility, event detection and few related areas). While it is still assumed
that the discussion is representative, other application domains might exist which are not fully covered by
the drawn conclusions. Similarly, the comparison of geosocial media content with ESM responses is only
one possible way of connecting the results obtained with other fields by reviewing methodological and
data similarities. This non-exhaustive treatment has been undertaken to keep the discussions tractable and
for starting an interdisciplinary dialogue between related fields.





I.5 Synopsis and Conclusions

This thesis studied the spatial analysis of spatially superimposed random variables. These variables
appear in user-generated datasets like those extracted from geosocial media feeds and they partially
represent externalizations of everyday spatial practices of people. The findings obtained provide basic
knowledge necessary for the spatial-statistical characterization and understanding of these types of data
and related social phenomena. In order to enable a holistic view of the topic, four aspects have been
addressed: (i) the spatial data characteristics of superimposed random variables were investigated, (ii)
suitable methodological approaches were derived, (iii) a contribution was made to the exploration of
how spatial analysis with superimposed random variables is carried out in empirical studies, and (iv)
conceptual and methodological commonalities with neighbouring fields and related types of statistical
data were determined. The following paragraphs establish connections between these individual parts
and conclusions are drawn from this synthesis. The chapter closes with the major key conclusions of this
thesis.

I.5.1 Synoptic Integration

Geosocial media and related ambient user-generated datasets represent information about human experi-
ences with and within places. Places are experienced individually and are defined as locations infused
with human meaning (Tuan 1977; Agnew and Livingstone 2011). Their representations thus appear
multi-layered in collective spatial datasets, making their spatial analysis a challenging task. This is
reflected in the mainly aggregated type of spatial analysis found in the literature and discussed in Chapter
II.5 and Steiger et al. (2016c) for RQ 3. Apart from intended large-scale analysis, this strategy is a
workaround to avoid the technical challenges widely discussed in this thesis. For instance, in Bakillah
et al. (2015), one of the studies discussed, Twitter messages about disaster-related damage sightings are
investigated by applying an algorithm treating the spatial point data in an aggregated way. This is done to
mitigate the influence of the low intersubjectivity of the messages and to instead find a spatial consensus.
However, the descriptions provided by the people are related directly to the concept of place, since they
reflect individually perceived impressions of damaged places. Their combination and the aim of reaching
a consensus is therefore questionable and, at best, a simplification. What these findings reveal is that
the widely adopted humans-as-sensors concept (Goodchild 2007) needs to be extended beyond space by
including stronger the notion of place.

Similar arguments hold true for the analysis of in situ survey responses discussed in Chapter II.4
and Bluemke et al. (2017) for RQ 4. The contextual conditions of the responders make them provide
subjective representations of perceived geographical, mental and other situations. These are further
strongly influenced by personal traits and the application of idiosyncratic distance estimations and scale
assessments. Therefore, both geosocial media data and in situ survey responses suggest that the spatial
analysis of superimposed random variables corresponds to the analysis of spatial representations of

39
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actually subjective platial1 data. Given the evident differences between geosocial media and in situ
surveys, this finding demonstrates the broad relevance of the research conducted in this thesis. A range of
user-generated datasets face similar technical and conceptual challenges and their joint methodological
treatment will benefit a better understanding of how people interact geographically with digital media.

The platial nature of geosocial media data is confirmed by the analytical results obtained for RQ 1.
The diverse spectrum of the contained scales discovered in Chapter II.1 and Westerholt et al. (2015), gives
hints that the contributed information describe individual encounters with places. These are based on
different phenomena and how these are perceived by different social media contributors, but also on the
idiosyncratic cognitions discussed in the previous paragraph. Geosocial media and related data are thus
externalizations of how people perceive different yet simultaneous phenomena occurring in geographic
locations. Different users have different preferences, which, in turn, depend on context and individual
characteristics. The users therefore communicate different aspects of a local geography and their behaviour
therein to geosocial media feeds. This creates a rich digital mirror image of the platial characteristics of
locations. The spectrum of overlapping scales obtained from Twitter messages is therefore a reflection of
the complexity of the (social) geography of an area.

The distortion of spatial patterns caused by simultaneously observed local clustering and repulsion
behaviours (Chapter II.2 and Westerholt et al. 2016) further corroborates the platial nature of geosocial
media data. Sometimes people communicate related phenomena (clustering), whereas they may also
utilize places in completely unrelated ways (repulsion). The spatial pattern detected from such data cannot
be interpreted unambiguously, which is why aggregation was found to be the preferred way of anaylsis
with this kind of data (RQ 3). However, the simulation experiments (given in Chapters II.1, II.2 and
II.6 and in Westerholt et al. 2015; Westerholt et al. 2016; Westerholt 2018) revealed that the technical
issues that occur with individual-level analysis are in fact also transferred to aggregate-level results. For
example, it was shown by a semivariogram how analysing Twitter messages in a combined way (though
still using the individual messages) leads to erroneous conclusions about spatial patterns. This was
further corroborated by showing that complex interactions exist between scales and other characteristics
and that these do not vanish when treating data in an aggregated manner. Aggregation (either prior
to or during an analysis) is thus a rather simple remedy to circumvent place-induced technical issues.
The obtained analytical results therefore highlight the problems of aggregated analyses and provide a
detailed understanding of the spatial characteristics of platial data. These achieved insights called for
methodological contributions to better incorporate the spatial characteristics of platial data, and for gaining
an enhanced understanding of these in empirical scenarios.

In his seminal paper on the cornerstones of GIScience Mike Goodchild suggested that in the future
methods will be needed to investigate overlapping spatial continuities reflecting the complex geographic
nature of the human-comprehensible world (Goodchild 1992). This forward-looking statement anticipates
the idea of place and platial analysis. However, GIS and GIScience mostly remained in the vein of
crisp vector units or field based notions for representing spatial phenomena. A slow shift towards the
notion of place and place-based GIS is only taking place recently. Goodchild further conjectured that
spatial statistics will play a pivotal role in these developments. This thesis provides insights that support
and advance the early visionary views of Goodchild. The results obtained for RQ 1, RQ 3 and RQ 4
(outlined and connected in the previous paragraphs) provide findings that reveal a strong connection
between the spatial-statistical characteristics of platial data and drawn conclusions about spatial patterns
related to these. Methodologically, this work is thus in the vein of the platial analysis movement and it

1The term platial is used synonymously with the term place-based.
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contributes to an enhanced understanding of the complex set of overlapping continua representing the
human-comprehensible world.

The methodological contributions obtained for RQ 2 in Chapters II.1 and II.3 (corresponding to
Westerholt et al. 2015; Westerholt et al. 2018) contribute to the advancement of platial analysis. They
explicitly incorporate the characteristics of spatially superimposed random variables disclosed in the
empirical parts of this thesis. For instance, the spatial weighting scheme proposed in Chapter II.3 takes
account of the mixture of scales found in spatial representations of platial data, as was investigated in
Chapter II.1. Similarly, the method LSD derived in Westerholt et al. (2018) puts forward the investigation
of spatial patterning of spatial variance. This characteristic is related to the strong, spatially overlapping
heterogeneity evident from Chapters II.2 and II.6. Thus, this connection shows that LSD allows to
investigate heterogeneity caused by topological and statistical characteristics of superimposed random
variables, and thus a spatial characteristic of places. The methodological achievements in this thesis
therefore contribute to the recent advancement of a theory on platial analysis and platial GIS, both of
which have recently been named some of the foremost research topics in GIScience (Duncan 2011;
Goodchild and Li 2011; Goodchild 2015).

The findings obtained represent a major step towards place-based analysis and will influence a number
of empirical research areas within and beyond geography. Findings from the behavioural sciences and
from psychology suggest a strong link between personal, demographic and other characteristics and the
subjective cognition of places (e. g., Weiss et al. 2003; Dangschat 2007; Witt et al. 2010; Zadra and Clore
2011; Sugovic and Witt 2013). Thus, the obtained findings are of relevance to all types of analyses using
user-generated geographic data in the AGI sense. These have gained momentum recently and include
human mobility investigations (e. g., Wu et al. 2015; Steiger et al. 2016b; Steiger et al. 2016a), natural
hazard analysis (e. g., Thomson et al. 2012; Crooks et al. 2013; Albuquerque et al. 2015) and event
detection (e. g., Hiruta et al. 2012; Sakaki et al. 2013; Cheng and Wicks 2014), among numerous other
fields. However, making sense of these data quantitatively beyond the purely spatial domain requires a
mature GIScience theory of places and their analysis, to which this thesis contributes important findings.
Beyond place, the thesis additionally allows better ways to find spatial solutions to enhance the spatial
analysis of these kinds of data. This was for instance demonstrated by the refined hot-spot detection
presented in Chapter II.1, where taking account of the spatial organization of places significantly increased
the meaningfulness of the obtained spatial analysis results. It is thus expected that the findings obtained
provide geographers and related spatial scholars the means to make sense of user-generated georeferenced
and ambient data, and to provide a profound impetus to the ongoing advancement of platial analysis.

I.5.2 Main Conclusions

Overall, the findings indicate that spatially superimposed and heterogeneous random variables are spatial-
statistical representations of platial information. This thesis therefore confirms recent discussions conjec-
turing geosocial media data to be of largely platial nature (Quesnot and Roche 2015; Roche 2016; Jenkins
et al. 2016; Mckenzie and Adams 2017). On this basis, and on the basis of further evidence presented in
this thesis, the following main conclusions are drawn:

Everything is related to everything else. This well-known quote from Waldo Tobler’s first law of
geography (Tobler 1970) summarizes one of the most important analytical findings of this thesis, which is
the interrelatedness of most of the investigated statistical characteristics. The investigations conducted
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revealed strong connections between scale, statistical parameters and topological effects. For instance,
changing the scales of overlapping processes influenced the effect of mean values on spatial analysis
results (Westerholt 2018). The mean values, in turn, impacted the strength of the falsely disclosed
non-existing processes that were found to interfere with spatial autocorrelation results (Westerholt et al.
2016). The meaning of these concatenations of joint effects is two-fold: On the one hand, they complicate
the traceability of the influence of individual statistical characteristics on spatial analysis results. Figuring
out the influence of all of them together in a complex real-world empirical scenario is thus difficult, and
eventually intractable. On the other hand, the disclosed connections between the effects of characteristics
show the sensitivity of spatial analysis methods regarding data characteristics when platial information
is analysed in a spatial way. This is partly contrary to the results obtained by Griffith (2010), who
investigated Moran’s I and found a certain robustness of this measure against non-normal distributional
characteristics of random variables. The discrepancy shows that varying a single characteristic (like
distributional assumptions) is not sufficient for a holistic understanding of statistical variations when it
comes to the analysis of complex platial data like it was considered in this thesis.

Superimposed random variables are spatial representations of platial phenomena. The results ob-
tained indicate that the random variables analysed in this thesis reflect subjective human interactions
with geographic space. The discussion of existing empirical studies in Steiger et al. (2016c) revealed
a strong focus on user subjectivity. In some cases, that subjectivity is treated as a nuisance calling for
treatment prior to further analysis (e. g., Sengstock and Gertz 2012). In other cases, researchers exploit
the wealth of personal information it offers (e. g., Steiger et al. 2014a; Steiger et al. 2016b). In almost all
cases, however, the focus of the analyses is on how people perceive and interact with geographic space.
For instance, the reviewed analyses of human mobility behaviours investigate individual activity spaces.
By analogy, the discussed studies on detecting urban structures typically reveal information about how
people perceive the topography of a city. Additionally, the derived information are often enriched by
further qualitative dimensions like emotions and sentiments (e. g., Mitchell et al. 2013; Resch et al. 2015d)
or social network properties (Croitoru et al. 2015). Although the derived information referred to above
is technically treated as spatial random variables, subjectivity combined with a number of additional
content dimensions gives a strong indication of the actually platial character of this data. This impression
is confirmed by the analytical results obtained in this thesis and makes spatially-superimposed random
variables spatial representatives of platial phenomena.

Analysis of superimposed random variables provides clues to the conjectured container property
of places. A location together with its characteristics is considered a place when it is perceived as a
unique whole that can be contrasted with the literal “everything else”. Places have been conjectured to
be containers that provide a context for the emergence and development of phenomena (Johnson 1987;
Winter and Freksa 2012). This idea has mostly been discussed conceptually so far. However, the results
obtained in this thesis contribute empirical evidence for this characteristic. For instance, the fact that
multiple scales co-occur (Westerholt et al. 2015) shows that each of the underlying causal processes
is evolving in its own container, largely detached from the others and only connected through certain
shared contextual parameters. Beyond these, each of the phenomena instantiates its own space in which it
evolves. By analogy, the simultaneous observation of clustering and repulsion behaviours (Westerholt
et al. 2016) indicates that different types of spatial processes utilize similar spaces, but require different
platial affordances. One implication of this is that statistical characterizations of superimposed random
variables enable important insights into the spatial organization of places. The spatial analysis of this kind
of random variables can thus be considered an important tool for getting a better understanding of one of
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the dimensions of places. This thesis thus gives strong empirical indications for the places as containers
argument and makes a statistical connection between space and place.

Some issues caused by superimposed random variables are related to known statistical problems.
It was demonstrated in this thesis that the spatial analysis of superimposed random variables faces
statistical problems. These were identified in the experiments conducted and it was shown that these may
lead to erroneous conclusions. One of these is the dependencies between scales which are induced by their
spatial overlap. This issue is structurally similar to the well-known multiple hypothesis testing problem
that appears with local statistical tests (Caldas de Castro and Singer 2006; Nelson 2012). The spatial
co-incidence of different scales leads to the repeated testing of hypotheses on different scales, whereby the
same data is used each time. Like with local hypothesis tests, the significance level requires adjustment
because there is a risk of making at least one error in each test that has been carried out, instead of just
once. Another issue mimicking an established problem is the inherent heterogeneity of the investigated
random variables, which is related to a lack of stationarity. This makes the corresponding data appear
noisy and has led to a considerable methodical effort in eliminating this effect (Sengstock and Gertz 2012;
Lovelace et al. 2016). Some of the methodological work conducted in this thesis can thus be considered
noise reduction approaches, for instance, the geometric stratification approach presented in Westerholt
et al. (2015). In this sense, the proposed technique GS*

i complements noise removal strategies from
other fields like minimum noise fraction (remote sensing) (see Luo et al. 2016b) or stopword removal
(natural-language processing) (see Saif et al. 2014) by a geometric spatial noise approach sorting out
wrongly scaled information. However, though heterogeneity is a technical issue violating assumptions of
spatial analysis techniques, the term noise is not appropriate in this context. Noise is a disturbing effect,
but the heterogeneity within superimposed random variables is a reflection of the diversity attached to
the represented phenomena. These two examples show that many issues are related to known problems.
Existing solutions for solving these may thus allow bridging technical issues in the spatial with those in
the platial world.

Spatial analysis results obtained with superimposed random variables shall be carefully revisited.
The insights gained in this work could, after conducting a critical review, lead to the conclusion that
many available empirical results obtained from geosocial media data may prove to be incorrect. These
results were largely obtained by using spatial analysis methodology without taking account of the effects
discovered in this thesis. A comparable situation has occurred in ecology in the early 2000s, after
researchers had found that spatial autocorrelation was almost never taken into account in statistical
analyses in that field (Diniz-Filho et al. 2003). It is possible that some of the findings from fields for which
geosocial media data has been considered particularly valuable (e. g., human disaster response, human
mobility or spatial communication behaviour) are flawed in a similar direction in that the place-based
nature of the analysed data and the respective spatial implications may change the nature of the already
obtained findings. For example, the disclosed impacts of spatially overlapping scales on hot-spot detection
are severe. If these are not considered in analyses, the results are likely to indicate wrong centres of
social activity and other processes. Further, quantitative results on spatial relationships (e. g., spatial
communication behaviour) may be equally distorted by varying statistical parameter values and their
effect on the magnitudes and signs of spatial measures. The findings obtained in this thesis may therefore
not only provide an impetus for future work towards platial analysis, but could also provoke a critical
discussion of existing geographical findings regarding geosocial media and related sources of information.





I.6 Future Research

The conclusions drawn and the knowledge gained from this work permit a wide range of further research.
Therein, the following recommendations have been identified as particularly valuable. These focus on the
fields of spatial analysis, place-based analysis, and additional adjacent areas.

I.6.1 Spatial Analysis

Interesting future opportunities can be found by integrating superimposed random variables further with
the field of spatial analysis. It was demonstrated in this thesis that many established concepts are not
directly applicable to superimposed random variables. However, many of these concepts are still important
for obtaining reasonable results with these kinds of information, and substantial effort is thus needed to
integrate the issues discovered in this thesis with available concepts from the spatial analysis framework.

One particularly important concept that requires adaptation in future research is stationarity. This
concept is related to the notion of equilibrium and it describes a set of assumptions about the stability
of statistical parameters within an observation area (see Section I.3.3). Stationarity is relevant to ensure
the validity of auxiliary parameters, and for drawing reasonable conclusions based on appropriate null
models. However, available spatially-exclusive notions like second-order or intrinsic stationarity are
not useful when phenomena appear spatially intertwined. Analysing the related spatially superimposed
random variables requires an operational adaptation of the stationarity concept towards the case of spatial
(and temporal) simultaneity, allowing variation within local subsets of observation areas. One possible
approach could be to develop a multivariate notion of stationarity by treating mixed phenomena with
different parameters separately. Yet, this would require prior separation, which can be difficult if the
information available on phenomena is scarce, as it is typically the case with geosocial media and related
datasets. Another possible strand might be the spectral analysis of variances and other parameters (Fuentes
and Reich 2010) by means of decomposing the mixture of superimposed parameter values into their
constituent parts. Regardless of how, a suitable stationarity notion will be required in the future in order to
make geographical sense of the wealth of collected georeferenced user-generated and ambient datasets.

Changing the concept of stationarity has broad implications on closely related topics such as asymp-
totics. For instance, second-order stationarity is required for a well-behaved asymptotic convergence
behaviour of statistical estimators like Moran’s I, by means of operational central limit theorems. In
spatial statistics, asymptotics have been derived under two different premises: increasing domain, and
infill asymptotics (Anselin 2001). The first of these is conceptualized by an infinite extension of the
investigated spatial domain through adding observations to its edges. In contrast, infill asymptotics
approaches the limit by dividing the observation area into ever smaller units. Both approaches are not
feasible with superimposed random variables and novel concepts regarding asymptotics are thus needed.
Infill asymptotics cannot be established because that would conceptually lead to non-stationarity in case
of superimposed random variables. Very fine-grained subsets may then no longer be filled up with
the mixture of processes that characterizes a region, which implies qualitative differences. Similarly,
increasing the domain would simply mean to add more noisy mixture observations, which helps only
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marginally. Thus, a spatial stationarity notion for superimposed random variables requires to rethink a
range of further concepts like the discussed asymptotics. Obtaining stable and reliable spatial-statistical
estimators relies heavily on their successful future derivation.

Future methodological research should focus on finding generalized forms of measures of spatial
autocorrelation like Moran’s I, Geary’s c and related statistics. This would enhance the understanding of
how superimposed random variables are related to, and fit into, the conventional spatial analysis theory.
Further, if generalized forms covering both these types of information exist, that would allow to elaborate
a joint framework in which theoretical results for both forms could be obtained simultaneously. Such a
joint framework would be in accordance with existing generalizations available in spatial analysis. For
instance, it has been shown that most available measures of spatial autocorrelation are mutually related
and that they form special cases of the Mantel test (Hubert et al. 1981). Further common frameworks
have been presented for global (Lee 2004) and for local hypothesis testing (Lee 2009), both unifying
different kinds of spatial hypothesis tests. Integrating spatial random variables with the superimposed
random variables considered in this thesis could lead to two future results: It might either demonstrate
that the superimposed case itself forms a generalization, subsuming the conventional variables as a special
case. Another possible outcome could be the discovery of an even more general mechanism connecting
superimposed and spatially-exclusive forms of analysis. The latter could serve as an interesting bridge
between spatial and place-based analysis.

Another important future research topic is that of appropriate spatial weights. A large number of
different spatial weighting schemes is available (see Getis and Aldstadt 2004; Getis 2009). However,
as was shown in this thesis, spatially superimposed random variables require novel strategies beyond
the available geometric, topological and empirical approaches. Future research should consider further
properties of spatially mixed phenomena beyond the geometric domain that was considered in this thesis.
This could include qualitative dimensions such as evaluated topic associations or other semantic features
to maximize the number of spatial units correctly related. Time and cross-phenomenal relationships
should also be considered to allow spatiotemporal and cross-correlation analysis. The temporal case,
however, implies further conceptual difficulties. For instance, it is not always clear how space and time
shall be treated together mathematically. Temporal scales of everyday phenomena depicted in geosocial
media feeds can further be complex both in their own individual regard and with respect to their mutual
entanglement. Elaborating on these aspects will enhance the plausibility and level of detail of future
research results obtained from superimposed random variables.

Spatial data analysis evaluates spatial pattern in attributes by conditioning on fixed geometric layouts.
In contrast, the related field of spatial point pattern analysis deals with stochastic geometries whereby
the locations of points, networks and other geometries are themselves considered outcomes of random
processes (an overview is found in Illian et al. 2008). Considering attributes in case of stochastic
geometries (where attributes are called ‘marks’) is done by evaluating the so-called ‘typical point’, which
results in fixing the geometric layout and letting the attribute vary upon this. One major technique to
investigate these cases is the so-called mark correlation function, the different variants of which are
mathematically equivalent to Moran’s I, G*

i and other measures from spatial data analysis (Shimatani
2002). However, spatially superimposed random variables are outcomes of two spatial processes: One
being related to the decision of a user to post content in a specific location, and the other referring to the
posted content itself. Based upon this presumption, analysing this kind of information spatially should
consider both these random processes simultaneously. This requires models and measures that take
account of the joint probability of both geometric layout and attribute at the same time. The result of that
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would be a spatial autocorrelation approach that allows evaluating the magnitude of spatial patterning
within attributes and within the geometries simultaneously. Such a doubly-stochastic notion of spatial
autocorrelation would be useful to a range of different fields, ranging from botany to the social sciences,
and could bridge stochastic geometry with traditional spatial analysis.

I.6.2 Place-based Analysis

The importance of the relationship between platial analysis and spatially superimposed random variables
was outlined and emphasized in the conclusions section (I.5). Future research should thus focus on the
integration of place-based concepts with those from spatial analysis. The GIScience literature on places
still pertains a strongly spatial viewpoint. Prevalent attempts to project places onto spatial maps illustrate
this. Place is therefore often condensed into a mere attribute which is then treated as a function of space.
Clearly, as shown by the literature from spatial cognition, social geography and related fields, the notion
of place is more complex and powerful than its current analytical treatment in GIScience suggests. For
instance, beyond their relationship to space, places have also been considered relationships between
individual persons and locations (Mennis and Mason 2016). At a conceptual level, GIScience should
therefore work towards better ways to formalize places and to make them available to place-based GIS
and platial analysis. This may build upon available concepts like activity spaces (describing the everyday
geography of individuals; Horton and Reynolds 1971; Golledge and Stimson 1997) and conceptual spaces
(quality dimensions among which space is included as one dimension; Gärdenfors and Williams 2001),
both of which could serve as valuable instruments towards formal GIScience place representations. The
debate around places would also benefit from a more fundamental discussion of the ontological and
epistemological implications of switching from spatial to platial viewpoints. Scheider and Janowicz
(2014) provide some initial ideas, and future research should follow these strands and related discussions.

Viewed from the statistical perspective of this work, platial analysis in the sense of an analogue
to spatial analysis is still a largely undefined field. Some initial attempts were made towards platial
counterparts of spatial GIS functionalities like buffers and joins (Gao et al. 2013) as well as on qualitative
spatial reasoning (which largely relies on the notion of place; Freksa 1991; Wolter and Lee 2010).
However, a statistical platial pattern detection and characterization in analogy to spatial analysis is not yet
in sight and many essential concepts are still missing. For example, we do not yet have a notion of platial
units available. Spatial units provide containers used to model those parts of geographic space that are
utilized by spatial processes for their dynamic diffusion. This thesis has underpinned the container notion
of places in the sense that these provide the contextual conditions for processes to develop. However,
it is yet unclear how a place-based counterpart to spatial units would technically and conceptually look
like. Similarly, it is also unclear what kinds of statistical analyses would be possible and what a useful
hypothesis testing framework would be for them. Is it possible to define a concept of platial autocorrelation,
and, in case it is, what would a revised place-basesd first law of geography look like? These questions are
largely unaddressed to date and GIScience should focus on the development of platial analysis in future
research to enhance the understanding of places and to support quantitative (social) geography.

I.6.3 Related Research Areas

The findings obtained in this thesis encourage further conceptual work beyond spatial analysis and the
space/place dualism elaborated above. As the discussions have shown, geosocial media are only one
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way to obtain spatially superimposed and heterogeneous random variables. For instance, the investigated
in situ survey responses are structurally similar but differ with respect to various characteristics. Many
further types of user-generated datasets may also fall into the same category. For example, user-collected
air pollution sensor data (Sîrbu et al. 2015) or crowd-sourced physiological conditions and emotions
(Resch et al. 2015b) may be affected by the same technical issues identified in this thesis. Although these
types of information are very different from geosocial media feeds, the related datasets are also collected
by users in a largely uncontrolled way. User behaviour patterns are thus likely to be contained, leading
to similar kinds of heterogeneity. However, these additional types of spatially superimposed random
variables may vary with respect to certain statistical and other characteristics. For instance, calibrated
devices like carbon sensors carried by people in their everyday lives exhibit lower degrees of uncontrolled
heterogeneity in their recording of content than human textual inputs provided by geosocial media. Still,
the data collected is prone to contextual conditions and to the activities the contributors are engaged
in during data collection. Forthcoming research should identify how and to what degree the statistical
analysis of these types of data coincides with the results obtained in this work and the extent to which
there are systematic differences. This will reveal a better understanding and disambiguation of different
types of user-generated superimposed random variables—and thus ultimately of different facets of human
everyday behaviours.

Another interesting relationship that should be investigated in the future is that with statistical
mixing. Statistical mixing refers to the property of different gases or fluids mixed into each other to be
indistinguishable after a certain period of time (Lebowitz and Penrose 1973; Frigg and Werndl 2018).
For instance, if red and blue colour are blended into each other, that mixing leads to the colour violet.
The formation of violet takes a while, but red and blue pigments can no longer be detected visually. The
superimposition process found in the types of information considered in this thesis might also be analyzed
and explained well in terms of statistical mixing. Different processes depicted in geosocial media or other
datasets can be viewed as analogues to the colours and the superposition corresponds to the blend-over of
these as was illustrated above. Viewed over time, this idea corresponds to a non-equilibrium starting point
where different social processes start to develop in a certain region. After some time, because people
utilize the same places in different ways, these evolve into a collective equilibrium-like state in which the
entire geographical area appears like a noisy but almost uniform surface. However, even this theory from
statistical mechanics is not directly applicable because the different social processes do not necessarily
scatter evenly in a region, but, instead, the superposition process (i. e., the mix of processes) becomes
equalized. Further, statistical mixing refers to the asymptotic independence of a stochastic process. Thus,
application of this theory is inevitably linked to future work on asymptotics outlined earlier in this section.
It is only possible to investigate how processes mix over time and space, if it is clear what the term limit
means conceptually with the kinds of information treated in this work. Therefore, this suggestion of
adopting the well-studied theory of statistical mixing requires other future work to be solved first and is
formulated as a long-term goal towards a better understanding of superimposed random variables, the
composition and characterization of places, and, ultimately, of how people organize their everyday life
geographically.
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II.1 A Local Scale-Sensitive Indicator of Spatial Autocorrelation
for Assessing High- and Low-Value Clusters in Multi-Scale Datasets

Abstract

Georeferenced user-generated datasets like those extracted from Twitter are increasingly gaining the
interest of spatial analysts. Such datasets oftentimes reflect a wide array of real-world phenomena.
However, each of these phenomena takes place at a certain spatial scale. Therefore, user-generated
datasets are of multi-scale nature. Such datasets cannot be properly dealt with using the most common
analysis methods, because these are typically designed for single-scale datasets where all observations are
expected to reflect one single phenomenon (e. g., crime incidents). In this paper, we focus on the popular
local G statistics. We propose a modified scale-sensitive version of a local G statistic. Furthermore, our
approach comprises an alternative neighbourhood definition that is enables to extract certain scales of
interest. We compared our method with the original one on a real-world Twitter dataset. Our experiments
show that our approach is able to better detect spatial autocorrelation at specific scales, as opposed to
the original method. Based on the findings of our research, we identified a number of scale-related issues
that our approach is able to overcome. Thus, we demonstrate the multi-scale suitability of the proposed
solution.

Keywords: Scale, Spatial Autocorrelation, User-Generated Data, Social Media, Twitter

II.1.1 Introduction

Spatial patterns of geographic phenomena can be explored using indicators of spatial autocorrelation.
Such indicators express the degree of dependence among different observations of some spatial variable
(Cliff and Ord 1969). In more general terms, spatial autocorrelation can be described as the correlation
between a matrix of spatial relations (usually referred to as “spatial weights matrix”) and an attribute
value matrix. Corresponding indices are often designed as test statistics. In such circumstances, their goal
is to find unusually high degrees of spatial dependence by testing against the null hypothesis of spatial
independence (Getis 2010). Typical fields where this kind of statistic is particularly helpful are human
geography, epidemiology or criminology. In such fields, spatial autocorrelation statistics can, for instance,
be used for finding areas of high economic prosperity, regions of elevated infectivity or crime hot spots.

One recurring problem with spatial autocorrelation statistics is their sensitivity to spatial scale effects.
Most geographic phenomena operate on a specific scale range. This typically includes both an upper
and a lower distance bound. Some processes occur globally, while others are limited to small regions
(Dungan et al. 2002). Therefore, geographic data acquisition requires adjusting the measuring scale to
the phenomenon of interest. This is achievable with little effort in controlled experiments that rely on
automated measuring devices. Appropriate geographic deployment of such devices leads to a correctly
scaled dataset. However, adjusting the measurement scale becomes more difficult (or even impossible)
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when employing uncontrolled data acquisition methods, for instance when observing social activities
through georeferenced human reports in social media feeds like Twitter. Such uncontrolled data acquisition
does not allow for a priori scale adjusting and thus causes a potential misfit of the measuring scale. In
addition, user-generated data often represents more than one phenomenon. Observations originating
from such data sources reflect a wide array of underlying phenomena. Moreover, single contributors
reporting about these phenomena typically do not interact directly. Thus, their contributions appear in a
geometrically superimposed manner. A similar effect can be observed in census data, where processes
operating at different scales are interacting crosswise and are aggregated to the respective datasets (Manley
et al. 2006). The analysis of user-generated data in general is of ever increasing interest. Recently, social
media in particular has been leveraged in diverse fields such as human mobility analysis (e. g., Hawelka
et al. (2014)), event detection (e. g., Crooks et al. (2013)) or sentiment analysis (e. g., Mitchell et al.
(2013)).

However, most of the available spatial autocorrelation statistics have been developed in the context
of controlled data acquisition processes. They assume some spatial variable to represent only one
phenomenon, measured at a best fitting scale. In such case, it is possible to adopt a region-oriented point
of view by asking the question “What region of a dataset is out of the ordinary?” Here, one just has to
properly model the size and shape of the focal neighbourhoods. However, multi-topic and thus multi-scale
datasets like those extracted from social media are of heterogeneous nature. Every sub-region can contain
observations at small scales being situated next to others at larger scales. These observations appear
to be crosswise and overlapping. In fact, one region cannot be regarded as one coherent spatial unit in
such cases. The question here changes to “Which observation at a certain scale in what region of a
dataset is out of the ordinary?” Thus, the focus changes from being purely region-oriented towards a
phenomenon-oriented viewpoint. The question is how to separate the extraordinary from the ordinary
without drawing wrong conclusions from such heterogeneous mixed-scale regions.

Existing spatial autocorrelation approaches apply various strategies for coping with scale issues. One
of these is to vary the spatial weights matrix in size, shape or topological configuration. A broad range of
different approaches was developed over the last decades. Getis and Aldstadt (2004) figured out eleven
different general schemes, without claiming completeness. A well-known scale-related issue that is related
to neighbourhood definition is that of topological invariance. Different topological configurations might
comprise the same spatial weights matrix when being modelled by simple binary contiguity. This effect
even appears across different scales (Dacey 1965). One can avoid this kind of problem by recognizing
topology in the neighbourhood definition via applying an appropriate weighting scheme (Cliff and Ord
1969). Another way of dealing with scale is to use local statistics instead of global measures. These
can account for non-stationary spatial processes and exogenous factors causing heterogeneity (such as
topography). Thus, they can model local-scale characteristics more realistically (Fotheringham 2009).

In this paper, we propose a modified version of a local G statistic, which we call GS statistic. The
“S” in the name reflects our emphasis on scale. Our version of the local G statistic is able to deal with
multi-scale datasets. Spatial autocorrelation can be assessed by following a two-step approach: First,
the scale range of interest is extracted by relying on a new neighborhood definition. Our neighborhood
definition differs from common approaches in that all tuples of observations within the local focus
are examined with respect to their scale. Furthermore, the principle of the statistic itself is modified
towards operating at a certain scale, instead of mixing up different ones. This allows for unraveling
the autocorrelation structure of all locally available scales separately. We further develop equations for
assessing the variance and the expectation and we present a standardized version of our statistic. Finally,
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we test our approach by comparing it to the original method. We apply both the original and our method
to a Twitter dataset consisting of a snapshot of an urban setting from the city of San Francisco and we
discuss some scale-related issues.

We start the remainder of this article by giving background information on the ambiguous term of
geographic scale in Section II.1.2. Afterwards, in Section II.1.3, we present a literature review on the field
of spatial autocorrelation statistics, with special focus on scale. In Section II.1.4, we define our modified
statistic, which is being tested in Section II.1.5. We end our paper with some concluding remarks in
Section II.1.6.

II.1.2 Background: Some Notes on Geographic Scale

The concept of geographic scale is central to this paper. Spatial phenomena are supposed to operate at a
certain scale. Therefore, accounting for this property is crucial for obtaining realistic results from spatial
autocorrelation analysis. However, scale is an ambiguous term. While the concept is of interest to several
disciplines, each adopted a different meaning (see Gibson et al. (2000) for a multi-disciplinary overview).
Ecologists use the term for describing levels in the hierarchical system of biological taxonomy or in the
hierarchy of a food chain (Allen and Hoekstra 1992). Sociologists classify their research according to
the scale of human relationships, i. e., into micro-, meso-, macro- and global-sociology (Smelser 1995).
Scholars from political sciences or from urban planning use the term “scale” less from a quantitative than
a conceptual point of view. In analogy to political jurisdictions, they classify their research into studies at
the local, regional, national or international scale (Turner 1989; Gibson et al. 2000).

Different notions of scale are also common even within the single discipline of Geography. Carto-
graphic scale, for instance, refers to a ratio between model and reality. It is a proxy for the degree of
spatial reduction during the process of reality abstraction (Turner 1989). In contrast, phenomenon scale
(or operational scale) describes the areal magnitude that a phenomenon covers in the real world (Lam
and Quattrochi 1992; Montello 2001). Its counterpart is analysis scale (or methodological scale), which
denotes the unit size used for aggregation (Lam and Quattrochi 1992; Montello 2001). The concurrent
term “resolution” basically describes the same concept in remote sensing, where it is used to specify the
width of equally sized grid cells. Another more general description of the concept of resolution/analysis
scale has been given by Waldo Tobler. He describes this concept as the representation of the smallest
distinguishable parts (Tobler 1988).

Throughout the remainder of this paper, we use the term “scale” to refer either to phenomenon or
analysis scale. Both are interrelated. If one is analyzing a spatial phenomenon at a wrongly adjusted
analysis scale, the analyst misses out the essential information (i. e., spatial variation) (Goodchild 2001).
Thus, it is crucial to harmonize the phenomenon scale (or the “real-world” scale) and the analysis scale.

II.1.3 Literature Review

A broad range of indicators for measuring spatial autocorrelation has been developed over the last decades.
Many of them are of global nature and describe the average spatial autocorrelation across a given region.
Popular examples include the autocovariance-based Moran’s I (Moran 1950), the semivariance-based
Geary’s c (Geary 1954) or Tango’s C (Tango 1995) and Rogerson’s R (Rogerson 1998), the two latter
being both related to the χ2-goodness-of-fit test. A statistic that moreover allows statements about the
characteristics of the involved observations is Getis & Ord’s G (Getis and Ord 1992; Ord and Getis 1995).
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Zhang and Lin (2006) modified G for overcoming the problem whereby high and low values might cancel
each other out. These authors also presented an alternative approach to G by decomposing Moran’s I into
three separate statistics (Zhang and Lin 2007). These are respectively capable of finding either high-value,
medium-value or low-value accumulation.

The indicators presented above are designed for dealing with numerical attribute values. However,
more recently, some research has also taken place around indicating spatial autocorrelation in the context
of categorical data. This kind of spatial association is indeed beyond the focus of this paper. However,
some recent examples can be found in (Boots 2003; Ruiz et al. 2010; Leibovici et al. 2014). Most of these
indicators are based on entropy measures.

Approaches to the treatment of scale and related issues can be distinguished into two general but
complementary strategies: The use of local statistics and the design of spatial weight matrices. Local
statistics are better suited for taking into account the local context than global ones (Fotheringham 2009).
These measures assess the autocorrelation of a given local sub-region instead of subsuming the whole
spatial autocorrelation structure by just one number. This category of statistics is relatively recent and is
often designed to complement some corresponding and already available global measure. Examples of
such statistic include Gi and Gi

* (Getis and Ord 1992), LISA statistics (the local versions of Moran’s I and
Geary’s c) (Anselin 1995), U (Tango 1995) or local R (Rogerson 1998). The general principle of these
statistics is to compare a local neighbourhood to some overall dataset. However, this is problematic when
considering the potential heterogeneity of spatial regions with respect to underlying covariates. A recent
approach that has been presented by Ord and Getis (2001) tries to overcome this issue by comparing
contiguous regions instead.

The compilation of spatial weights matrices is another strategy for dealing with scale issues. Getis and
Aldstadt (2004) revealed at least eleven different schemes for this purpose. Getis (2009) categorized them
into three categories according to their respective nature. Following this, spatial weight matrices can be
constructed by following a theoretical, empirical or topological point of view. Theoretical approaches are
based on some underlying distance theory such as Zipf’s law (Zipf 1949). They assume the spatial weights
to be exogenous to any system. The most frequently applied approach of this kind is using some sort of
inverse distance. Scale is typically modelled by inducing an upper distance bound. The opposite of the
theoretical approach to constructing weight matrices is constructing them in an empirical manner. Here,
the analyst tries to estimate the neighbourhood structure by extracting it from some reference region of a
given dataset. However, this reference region is also the limiting factor for the explanatory power of such
matrices. A third approach to matrix construction is trying to depict the topology as realistically as possible.
These approaches are motivated by the well-known issue of topological invariance (Dacey 1965), which
leads to similar matrices across different topological settings when using binary contiguity indicators. An
issue related to scale here is that differently sized spatial units are nevertheless treated similarly. Cliff and
Ord (1969) suggested using suitable weighting schemes to overcome this problem. Examples of recent
approaches for matrix construction include that of Getis and Aldstadt (2004) (utilization of a local statistic
for assessing a proper matrix) or LeSage (2003) (Gaussian distance). Two interesting approaches with
specific focus on scale are presented by Aldstadt and Getis (2006) and Rogerson and Kedron (2012). Both
of them are based on successive expansions of the neighbourhood size until a maximum value of a given
local statistic (e. g., local Moran’s I) is reached. Another approach for finding a suitable scale is leveraging
the range of local semivariograms (Lloyd 2011). However, this is more common with geostatistical
scenarios such as kriging.
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In summary, research on indicators for measuring spatial autocorrelation has a long-standing tradition.
Indicators can be found for different types of data and originate from different domains. The same is
true for scale problems, which have indeed always been important to geographic problems. However,
dealing with scale remains a challenging and yet unsolved task (Getis 2006). It is interesting to note that
even today, after decades of research, modeling scale remains one of the biggest challenges in spatial
analysis (Fotheringham 2009). With the rise of mixed-scale datasets like those extracted from social
media, this issue is becoming even more challenging. None of the available approaches focuses on this
specific problem. Thus, this is the motivation for our research.

II.1.4 A Scale-Sensitive Local G Statistic

Before defining our scale-sensitive local G statistic, we first introduce the original method (Getis and
Ord 1992; Ord and Getis 1995). This statistic aims to assess not only spatial autocorrelation but also the
character of the observations that are involved. More specifically, it shows whether any local accumulation
primarily consists of high, medium or low attribute values. Two slightly different versions of the local
G statistics are available. One of them (called Gi

*) includes the current observation under investigation.
Its counterpart (called Gi) neglects the observation being examined and only accounts for its neighbours.
Equations II.1.1 and II.1.2 define both measures.

Gi
∗ =

∑
j ωi,j · xj∑

j xj
(II.1.1)

Gi =

∑
j 6=i ωi,j · xj∑

j xj
(II.1.2)

The variable x represents the attribute values. The matrix ω denotes a binary spatial weights matrix, where
values of one indicate adjacency to observation i. However, non-binary matrices are also allowed. The
index j iterates over the adjacent observations.

II.1.4.1 Issues Regarding Scale

The problem that is addressed in this paper is the issue of inadequate scale treatment when it comes to
multi-scale datasets. One issue that arises is related to the different scales involved in the nominator and
denominator of the local G statistic. In Equations II.1.1 and II.1.2, the nominators represent the sum of
the accumulated attribute values contained in a given local neighbourhood. That neighbourhood may
be defined by any given distance threshold. This sum is being compared against the overall sum of the
attributes’ values throughout the entire dataset (represented by the denominators). Now, if one changes
the distance threshold used to define the neighbourhood, it will clearly result in a scale change in the
nominators. However, there is no effect on the values they are being compared to, for the denominators
remain unchanged. This fact causes a serious issue when it comes to multi-scale datasets, whereby
phenomena occurring at different scales are compared with each other.

While the nominator represents spatial relations within a given distance range, the denominator
comprises spatial relations across all scales that are present in the dataset. This is indeed not an issue with
single-scale datasets, since only one scale is of interest under such circumstances. However, it becomes a
problem when analysing multi-scale datasets. In such cases, different scales are being mixed up, although
they might represent different phenomena. Another problem is the way in which neighbourhoods are
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Figure II.1.1: Schematic sketch of the proposed scale-adjusted neighbourhoods. d = distance; j, k ∈ N =
indices of observations; ⊕ = ‘exclusive-or’.

typically defined. As mentioned in Section II.1.3, many different approaches exist. However, they typically
model the neighbourhood as a fixed-size area around some observation. Furthermore, they assume to
include single-scale observations. This is inappropriate for multi-scale datasets, since phenomena at
different scales might be situated in close proximity to each other and overlap. Thus, prior to redefining
the original statistic, we need to introduce an alternative neighbourhood definition.

II.1.4.2 Scale-Adjusted Neighbourhoods

The first step of our proposed solution for overcoming the problems with multi-scale datasets is the use of
scale-adjusted neighbourhoods. Common approaches for neighbourhood definition specify their shape,
size or topological ordering (Getis 2009). The focal scale is usually modelled by choosing a sufficient
neighbourhood size. All instances being situated closer than a defined distance threshold are taken into
account. The threshold’s value is set based on the phenomenon being studied. However, in case of
multi-scale datasets, one is implicitly dealing with observations at scales that are smaller (or even larger)
than the intended one. Therefore, we suggest using an upper and a lower distance threshold. Moreover,
these thresholds are then used for evaluating the pairwise distances between all features in the vicinity of
the examined observation. If the distance between two of these features exceeds the upper bound or is
shorter than the lower one, their relationship is neglected and excluded from the neighbourhood. Figure
II.1.1 illustrates this approach.

II.1.4.3 Development of the Proposed GS Statistic

In this sub-section, we define our approach to defining a local scale-sensitive high/low value autocorrelation
statistic. This measure is derived by adapting the local G statistic, as stated above. We call our statistic “GS
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Table II.1.1: Preliminary variable definitions.

n

φjk

ωjk

Total number of point features
Binary variable, indicating scale fit (1) or misfit (0)
Spatial weights, indicating adjacency of k to j

f(xj , xk) =̂ fjk := f : D ×D 7→ R
A function that maps two input attributes associated with
points j and k to a real-valued variable

Γ =

n∑
j

j−1∑
k 6=j

f(xj , xk) The attribute value sum of all scale-fitting relationships shared
by points j and k

Φ =

n∑
j

j−1∑
k 6=j

φjk The total number of relationships fitting the analysis scale

W =

n∑
m

n∑
j

j−1∑
k 6=j

ωmj ωmk φjk
The cumulative number of relationships across all neighbour-
hoods fitting the analysis scale

Wi =

n∑
j

j−1∑
k 6=j

ωij ωik φjk The number of scale-fitting relationships adjacent to observa-
tion i

A =

n∑
m

n∑
j

j−1∑
k 6=j

ωmj ωmk φjk f(xj , xk) The cumulative attribute value sum across all neighbourhoods
at the given analysis scale

statistic”, where the added “S” reflects the emphasis on scale. It should be noted that our definition given
below focuses on pairwise relationships among observations. This kind of analysis is of broad interest
for the analysis of data extracted from social media, where analysts are often interested in collective
processes that occur within some geographic region. Thus, one might want to consider relationships
among observations instead of focusing on single occurrences. Our tests, which are presented in Section
II.1.5, deal with one such example (where semantic similarities are used to establish relationships).
However, it would also be of interest to generalize our basic principles to other geometric configurations.
Since this is beyond the scope of this paper, we leave that open to future research.

It is necessary to introduce some preliminary definitions, which are presented in Table II.1.1. These are
used throughout the remainder of this paper. We define them at this early stage for the sake of readability
of our equations. In addition, please note that we are using reduced designator notations (i. e., GS∗i instead
of GS∗i

dmax
dmin

and fjk instead of f(xj , xk)) for notational convenience.
The definition of the proposed statistic is based on the original statistic as given by Equation II.1.1.

Most formulas in the text are given without derivation. More detailed derivations can be found in
Appendices II.1.7.1 to II.1.7.5. Equation II.1.3 shows our modified version of a scale-sensitive Gi

*

statistic:

GSi
∗ =

∑n
j

∑j−1
k 6=j ωij ωik φjk fjk∑n

j

∑n
k

∑k−1
m6=k ωjk ωjm φkm fkm

(II.1.3)

As we are operating on pairwise relationships between tuples of observations, the indices j and k represent
the two observations being involved in that relationship. Thereby, the indices j and k have to be different.
Otherwise, a single point would be set into a relationship to itself. An additional indicator variable denoted
φjk has also been included. Its value is 1 if the distance between two contiguous features j and k is
within the interval [dmin, dmax], and 0 otherwise. Furthermore, the spatial weights matrix ω is evaluated
twice. This is necessary because both observations j and k must be adjacent to observation i. These
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modifications allow the inclusion of scale-adjusted neighbourhoods as described in Section II.1.4.2 and
lead to a match between nominator and denominator scales.

Under the null hypothesis (H0) of spatial independence, each outcome of function f is supposed to be
occurring equally likely (i. e., P (fjk) = 1/n). Furthermore, we suppose pairwise independence between
those outcomes. It follows that the expectation for f is estimated by:

Ê[f ] =

∑n
j

∑j−1
k 6=j φjk fjk

Φ
(II.1.4)

By using Equation II.1.4, we can define the empirical expectation of the GSi
* statistic under H0 (Equation

II.1.5). The first factor and the denominator in Equation II.1.5 are constant across all neighbourhoods.
Therefore, these can be ignored and the equation reduces to Wi/W . It follows that the statistic’s
local expectation is supposed to be proportional to the respective neighbourhood’s fraction among all
neighbourhoods at the given scale. This is analogous to the original method.

Ê[GSi
∗] =

Ê[f ] ·Wi

A
∼ Wi

W
(II.1.5)

In equations II.1.6 and II.1.7, we develop equations for the variance of the GSi
* statistic. Therefore, we

first need an equation for the estimate of the expectation of the squared test statistic in Equation II.1.6.
This is then used to estimate the empirical variance in II.1.7 by applying the so called one-pass algorithm
(Chan et al. 1983).

Ê[GS∗i
2] =

Wi·
∑n

j

∑j−1
k 6=j φjk f

2
jk

Φ +
Wi(Wi−1)(Γ2−

∑n
j

∑j−1
k 6=j(φjk fjk)2)

Φ(Φ−1)

A2
(II.1.6)

ˆV ar[GS∗i
2] =

Wi·
∑n

j

∑j−1
k 6=j φjk f

2
jk

Φ − W 2
i ·Γ2

Φ2 +
2Wi(Γ

2−
∑n

j

∑j−1
k 6=j(φjk fjk)2)

Φ(Φ−1)

A2
(II.1.7)

As expected, the variance under H0 becomes 0 if there are no neighbours in the vicinity of observation
i (i. e., Wi = 0). The same applies if no corresponding scale-fitting relationships are located in the
neighbourhood (Φ = 0) or if the total attribute value sum (A) of all those features equals zero. Similarly,
the variance estimation also becomes zero if the overall neighbourhood sum equals zero. In contrast, the
variance is greater than zero if all observations are contained in the neighbourhood of the current feature.
This is a difference from the original method. However, this becomes clear when recalling the statistic’s
principle: One neighbourhood is compared against all other neighbourhoods. Thus, the denominator is
always greater than the nominator, resulting in a non-zero variance.

The maximum value of our statistic is reached when all neighbourhoods mutually contain each other.
In such circumstances, the aggregation of all φjk for any tuple across the whole neighbourhood forms an
all-ones matrix. It follows that the maximum value of the GSi

* statistic is given as:

maxGS∗i =
1

n
(II.1.8)

Accordingly, the minimum value is reached if no values except the investigated observation itself are
contained in some neighbourhood. It follows that the minimum value is given by:

minGS∗i = 0 (II.1.9)
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Equations II.1.8 and II.1.9 show that the range of the GS*
i statistic is not fixed. This is a major difference

compared to the original G statistics, which range is the interval [0, 1]. In contrast, the GSi* statistic
depends on the number of input features. Thus, two GS*

i values should not be compared with each other
directly. A comparison is only meaningful after standardization. The standardized version of GS*

i is given
in Equation II.1.10. Applying this equation produces standard deviates (i. e., z-scores), which appear to
be on the interval [−∞,∞]. Furthermore, following the well-known central limit theorem, these scores
tend to be approximately normal, given a sufficiently large sample size. Therefore, these scores can be
evaluated by means of normal theory.

ZGS∗i =

∑n
j

∑j−1
k 6=j ωij ωik φjk fjk −

Wi·
∑n

j

∑j−1
k 6=j φjk fjk
Φ√

Wi·
∑n

j

∑j−1
k 6=j φjk f

2
jk

Φ +
Wi(Wi−1)(Γ2−

∑n
j

∑j−1
k 6=j(φjk fjk)2)

Φ(Φ−1) − W 2
i (

∑n
j

∑j−1
k 6=j φjk fjk)2

Φ2

(II.1.10)

II.1.5 Empirical Comparison Between GSi and Gi

We now empirically illustrate the problems that occur when applying the original Gi* statistic to multi-
scale datasets such as those extracted from social media. Furthermore, we also show that our approach
overcomes these problems. Before this is done, we explain the datasets that we used and all the necessary
preprocessing. Please note that we do not aim to analyze the regions that we sampled with respect to the
qualitative properties of the underlying phenomena. All following steps are merely illustrative for testing
our suggested approach with respect to the scale issues that are mentioned in Section II.1.5.3.

II.1.5.1 Dataset Description

The datasets we used were extracted from the social media service Twitter. They originate from an urban
setting in the city of San Francisco, CA. We used two randomly chosen time slots. One of them covers the
time period of January 30, 2014, from 8 p.m. until 10 p.m.; the second slot covers a whole week from the
20th of January until the 26th of January 2014.

Our automated crawler leveraged the public Twitter Streaming API. Since we are interested in applying
methods from spatial statistics, we restricted our query to georeferenced tweets only. We crawled all
tweets from a bounding box covering the city of San Francisco and its immediate surroundings. The
bounding box had a size of approximately 15× 15 km. We did not restrict our data collection by using
keywords or any other type of filter. The subsets of our dataset that we used for this paper sum up to a size
of 1,291 tweets (for the two-hour slot) and 69,345 tweets (for the one-week slot). Figure II.1.2 provides
an overview of this subset and shows its distribution over the city.

II.1.5.2 Preprocessing and Data Preparation

The crawled datasets consist of textual tweets. However, our approach as well as the original Gi
* statistic

are designed for dealing with numerical values. Thus, we first have to transform the textual tweets into
some numerical representation. We have chosen to use similarities among the tweets for our test and
comparative study. In a realistic scenario, high similarity scores might be interpreted as indicators of
coherent social activity (i. e., people might be reporting about similar topics). In order to obtain meaningful
similarities, several steps are conducted.
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Figure II.1.2: Overview of our test datasets originating from San Francisco, CA. Blue = 20th of January
until 26th of January; Red = 30th of January, 8 p.m. until 10 p.m. More intense colours
indicate higher numbers of superimposed Tweets. Base data: VMAP, National Geospatial-
Intelligence Agency, USA.
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The first step is to split up the cohesive strings of words into single tokens. The tokenisation process
that we used follows some rules that have been adapted from the recent literature: The texts are split up
at case changes, except if they occur at the beginning of a word (Metke-Jimenez et al. 2011); Twitter’s
specific symbols (e. g., #, @) are kept (O’Connor et al. 2010), and short forms or contractions of English
words (e. g., I’m) are retained (Pak and Paroubek 2010). Moreover, we split the tweets at white-spaces
and punctuation marks. A large portion of the resulting tokens occurs frequently, but adds little meaning
(e. g., “to”, “or”). Therefore, these so-called stop words are removed from the corpus in the second step.
For this purpose, we relied on the English stop word list provided by the database system PostgreSQL.

The actual similarity assessment is based on the method of Latent Semantic Indexing (LSI) (Deerwester
et al. 1990). The core principle of this method is based on a singular value decomposition (SVD). First of
all, the tokens are transformed into normalised frequencies (called Term Frequency-–Inverse Document
Frequency (TF–IDF) scores). These are then used for extracting inherent components, based on word
co-occurrence. LSI works in an unsupervised manner. Thus, no a priori knowledge about the text corpus
is needed. However, a criterion for maintaining a reasonable number of components is required. In our
experiments, we used a broken stick model for this purpose. This approach is usually used for modelling
resource allocation in ecology. However, it has also proven to be useful for application of the SVD
(Cangelosi and Goriely 2007).

Again, note that our approach for assessing similarities has been chosen for the sake of producing
numerical tweet representations. Neither similarity assessment itself nor analysing our test site is the
focus of this paper. Thus, the chosen approach is appropriate for our experiments regarding the proposed
statistic. We point out that more accurate semantic similarity approaches might be available (e. g., Latent
Dirichlet Allocation (Blei et al. 2003) or probabilistic LSI (Hofmann and Thomas 1999)). However, these
are more sophisticated and require more detailed a priori knowledge about the composition of the text
corpus. Whenever realistic conclusions are to be drawn from any dataset, careful consideration should be
given to the choice of an appropriate semantic similarity approach.

II.1.5.3 Comparison Between GS*
i and Gi

*

Our comparison focuses on three central problems that occur when the Gi
* statistic is applied to multi-scale

datasets. All these problems occur due to the issues highlighted in Section II.1.4.1. Moreover, we also
demonstrate that these issues are solved by our proposed solution.

Overemphasis of Dominant Scales

Recall the property of scale mixing within social media data. Figure II.1.3 illustrates the average
composition of five differently scaled neighbourhoods. These neighbourhoods are heterogeneous. In most
cases, the actual scale of interest contributes only approximately 30 % of the total attribute value sum.
This means that approximately 70 % of all variation is contributed by scales other than the one of interest.
Accordingly, when applying standard (i. e., single-scale) approaches for neighbourhood definition, all
these scales are considered together.

However, if 70 % of the total variation is contributed by phenomena beyond interest, it is likely
to create some bias in autocorrelation results. This is particularly the case when one or more of these
non-relevant scales are dominating a dataset. Figure II.1.4 shows to what extent the respective scales are
under- or overrated. It illustrates the ratio between the share in the attribute value sum and the share in
the quantitative composition of the neighbourhoods. It can be seen that the small scales (1–30 m and
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Figure II.1.3: Average composition of the attribute value sum for five classes of neighbourhood sizes.
The respective scales of interest are highlighted by displacement. Dataset: Twitter, 30th of
January 2014, 8 p.m. until 10 p.m.

30–100 m) are overrepresented in most neighbourhoods. Thus, phenomena operating at such scales are
excessively biasing the results at other scales.

The problems described above affect the original Gi
* statistic in two ways: On the one hand, scales are

superimposed in the focal neighbourhoods. On the other hand, these are then compared against an overall
mixture of scales (i. e., the denominator of the statistic). The larger the scale, the more different scales are
potentially being mixed up. Figure II.1.5 shows one of the effects caused by that behaviour. The mean of
the z-values obtained through the Gi

* statistic shows a strong trend with increasing scale. However, we
are dealing with a standardized version of the statistic. Following the central limit theorem, the resulting
standard variates are expected to be approximately normal. Thus, the mean is expected to be an unbiased
estimator of the expectation, which should be close to zero in the present case. That is obviously not
true for Gi

* when it is applied to social media datasets. It is very likely that this effect is caused by the
scale mixture described in the previous paragraph. That mixture implies different underlying populations,
since different phenomena might be operating at the different scales. Thus, there are also different means
present in the mixture. The mean of the z-values is influenced by that variety of means, which in turn
leads to the observed bias.

These effects are diminished with our suggested scale-sensitive approach. Our method only extracts
those scales from the vicinity of observations that are relevant for the current analysis scale. Thus, each
diagram shown in Figure II.1.3 would only consist of one pie slice, each representing the respective scale
of interest. The composition of the attribute value sum of the neighbourhoods is completely made up of
observations fitting the scale of interest. Moreover, the same applies to the comparative size. The modified
statistic only includes those observations in any calculation that are fitting the current scale of interest.
Therefore, the estimated means obtained through our modified statistic (see Figure II.1.5) remain close to
zero across all investigated scales.
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Type I/Type II Errors

The problem of overemphasising dominant scales leads to another closely related problem, which is the
occurrence of type I/II errors. This is a well-known general issue of all local statistics (Nelson 2012). It is
usually caused by missing strategies for facing multiple testing problems. However, when dealing with
multi-scale datasets, this problem is further exacerbated by an additional problem. When some scales
are dominating a dataset, they also hide weaker phenomena at less dominant scales. However, these less
pronounced phenomena are not necessarily less important. Some analyst might indeed be interested in
analysing these weaker phenomena. Now, several different configurations are possible: Some weaker
phenomenon might, for instance, consist of some high-value accumulation. These values might, however,
only be high according to their own respective scale. Some contiguous and more dominant scale might
comprise even higher values. In such situations, the dominance of the other scale with high values leads
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to type II errors. H1 is rejected although high values are present at the adjusted scale of interest. These
values just appear to be quite low in comparison to the more dominant adjacent scale that is present
in the same neighbourhood. The same situation occurs if a phenomenon of interest shows low-value
accumulation. Higher values at another scale are again artificially raising the neighbourhood score, leading
to H1 rejection. In contrast, type I errors occur whenever a scale of interest is actually not out of the
ordinary, but gets interfered by a more dominant scale. This situation might occur in both directions,
either toward low values (cold spots) or high values (hot spots). In such cases, the neighbourhood score is
artificially raised (or lowered) to a level that leads to a wrong acceptance of H1.

One example from our dataset is depicted in Figure II.1.6, which is showing two series of maps. Each
of those series comprises four different scales of interest in ascending order. Those series illustrate both
issues described so far. On the one hand, one can see the overemphasis of dominant scales. The results
obtained through the original Gi

* at the two smallest scales show a large number of statistically significant
high-value accumulations. In fact, 33.56 % of all tweets of the dataset are identified to be statistically
significant with Gi

* (scale = 1–30 m; two-sided test; α = 0.1 each). In other words, every third tweet is
considered to be part of a neighbourhood that comprises high-value accumulation higher than 90 % of the
other tweets. This is obviously an upwards biased value, due to the dominance of that scale compared
to larger ones. In comparison, the results obtained through our modified approach show a considerably
lower number of extraordinary observations. Since the dominance of scales is not affecting the results,
that method only evaluates 3.77 % of the tweets to be somehow abnormal. Another issue that can be
seen in Figure II.1.6 is the existence of type I errors. Because of the dominance effect described above,
H0 is rejected too often. This does not only appear at the dominant scales, but is transferred onto all
larger levels as well. Hot or cold spots occurring at small scales appear to be acting like “seeds” that are
being enlarged at the next larger scale. Thus, the type I errors can be found with increasing frequency by
enlarging the analysis scale. This effect also does not occur in the results obtained through our proposed
statistic. Every scale is only analysed against observations at the same scale. Thus, there is no dominance
to be transferred, resulting into a lower number of type I errors. However, the effect of “seed” locations
with Gi

* leads to another issue that is described in the following subsection.

Loss of Statistical Independence Between Scales

We already mentioned the spill-over effect of dominant scales that are transferred onto all larger ones.
We can also observe that this effect results into “seed” locations that appear to be growing as the scale is
getting enlarged. However, this phenomenon leads to another much more serious problem, which is the
loss of independence between spatial autocorrelation results obtained for different scales. We assume
all possible outcomes of spatial autocorrelation statistics to be equally likely. That is, we assume the
probabilities to be P (xa) =

∑
xa/n. If different scales are being admixed, however, this assumption is

no longer verified; this occurs, for instance, when assessing a non-zero spatial autocorrelation at some
small scale. If the scale is adjusted to some larger value, these small-scale instances are again included.
The problem is that now, the outcome of zero has become impossible. The effect of the non-zero spatial
autocorrelation at the smaller scale might be blurred (due to mixing) or be changed in nature (from
negative to positive or vice versa) because other observations are included in the neighbourhood. However,
the result of having no autocorrelation is no longer possible at any larger scale. In other words, the
independence requirement P (xb|xa) = P (xb) is no longer met. Since we are dealing with multi-scale
datasets that reflect potentially unrelated phenomena, this is an inappropriate property.
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II.1.6 Conclusions

The arising interest in analysing social media feeds and other kinds of human-generated datasets compels
us to address the specific problems of such data. One of those problems is their multi-scale nature that is
due to the uncontrolled data acquisition process. However, most spatial statistics are designed for single-
scale datasets that result from controlled experiments. This paper introduced a scale-sensitive version of
the popular Gi

* statistic. The proposed approach comprises an alternative approach for neighbourhood
definition and a scale-adjustment of the statistic itself. Moreover, some scale-related issues that arise when
dealing with multi-scale datasets are highlighted by comparing the results obtain through the original and
the proposed statistics. These comparisons are carried out on a Twitter dataset for the city of San Francisco,
CA. The results demonstrate that the suggested approach is better suited for dealing with multi-scale
datasets, because it allows analysing certain scales without cross-scale interferences. Thus, it can be used
in real-world scenarios whenever social media or other human-generated datasets are analysed.

However, scale-related effects affecting social media datasets are not yet fully understood. The list of
issues mentioned in Section II.1.5 is given without claiming completeness. There might be many more
effects that are still to be discovered. Moreover, the effects we listed and observed have not yet been fully
investigated. Thus, future research should focus on getting a better understanding of the multi-scale nature
of user-generated datasets. In addition, there are many more methods from spatial statistics and other
fields that are not yet sufficiently capable of dealing with multi-scale datasets. Our suggested approach
might serve as a starting point for initiating methodological research towards multi-scale enablement.

With respect to local autocorrelation statistics in general, more emphasis should be put on the
definition of the null hypothesis. Geographic space imposes uncontrolled variance, due to varying local
environmental conditions (Goodchild 2009; Anselin 1989). Local statistics such as Gi

* and our proposed
solution already account for heterogeneity with respect to the spatial distribution of observations. In
contrast, they usually include constant expectations of the observed variable. However, the outcomes
of those variables might also be influenced by non-stationary environmental conditions. One way of
overcoming this problem might be to use location-dependent expectation functions instead of constant
values. Corresponding local values might be determined by methods such as Geographically Weighted
Regression (Brunsdon et al. 1996). However, a specific problem to social media data is that the underlying
driving forces are not yet fully understood.
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II.1.7.1 A1. Derivation of the Empirical Expectation of GSi
*
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Since Ê[f ] and A are constant, we can infer that the expectation is proportional to the share of the
neighbourhood’s size among the overall sum of relationship outcomes:

Ê[GS∗i ] ∼ Wi

W

II.1.7.2 A2. Derivation of the Expectation of the Squared GS Statistic
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Ê[f2] =

∑n
j

∑j−1
k 6=j φjk f

2
jk

Φ
(II.1.14)

Solving Equation II.1.12 leads to quadratic and non-quadratic terms. Thus, we need Ê[f2] and Ê[f1, f2]
for inferring the expectation of the squared GS statistic. Both of these values are constant. Therefore, we
can extract them from the sums. Furthermore, ω and φ are binary and ω2

ij = ωij , φ2
jk = φjk. Accordingly

we can write:
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A2

=

Wi
∑n
j

∑j−1
k 6=j φjk f

2
jk

Φ +
Wi(Wi−1)(Γ2−

∑n
j

∑j−1
k 6=j(φjk fjk)2)

Φ(Φ−1)

A2

(II.1.15)

II.1.7.3 A3. Derivation of the Empirical Variance of the Local GSi
* Statistic

Applying the Steiner translation theorem leads to the variance of the statistic:
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II.1.7.4 A4. Derivation of the Maximum of the GSi
* Statistic
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II.1.7.5 A5. Derivation of the Standardised GSi
* Statistic
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II.2 Abundant Topological Outliers in Social Media Data and Their
Effect on Spatial Analysis

Abstract

Twitter and related social media feeds have become valuable data sources to many fields of research.
Numerous researchers have thereby used social media posts for spatial analysis, since many of them
contain explicit geographic locations. However, despite its widespread use within applied research, a
thorough understanding of the underlying spatial characteristics of these data is still lacking. In this
paper, we investigate how topological outliers influence the outcomes of spatial analyses of social media
data. These outliers appear when different users contribute heterogeneous information about different
phenomena simultaneously from similar locations. As a consequence, various messages representing
different spatial phenomena are captured closely to each other, and are at risk to be falsely related in a
spatial analysis. Our results reveal indications for corresponding spurious effects when analysing Twitter
data. Further, we show how the outliers distort the range of outcomes of spatial analysis methods. This
has significant influence on the power of spatial inferential techniques, and, more generally, on the validity
and interpretability of spatial analysis results. We further investigate how the issues caused by topological
outliers are composed in detail. We unveil that multiple disturbing effects are acting simultaneously
and that these are related to the geographic scales of the involved overlapping patterns. Our results
show that at some scale configurations, the disturbances added through overlap are more severe than
at others. Further, their behaviour turns into a volatile and almost chaotic fluctuation when the scales
of the involved patterns become too different. Overall, our results highlight the critical importance of
thoroughly considering the specific characteristics of social media data when analysing them spatially.

Keywords: Spatial Analysis, Spatial Autocorrelation, Eigenvalues, Social Media, Twitter

II.2.1 Introduction

One aspect in the analysis of social phenomena is the search for spatial structures and patterns. The aim
thereby is to explain the organization of complex spaces such as urban areas (Cranshaw et al. 2012; Lee
et al. 2013) as well as social behaviour patterns (Newsome et al. 1998; Rai et al. 2007). Twitter and
related social media feeds have recently become promising data sources in this regard. These online social
networks capture a vast amount of georeferenced data from the everyday life of users, and are thus expected
to represent a fraction of social happenings in geographic space. However, user-generated datasets have
some unique shortcomings, such as their potential lack of trustworthiness, missing representativeness
with respect to demographics, and self-selection bias (Gayo-Avello 2012). The authors of (Sengstock and
Gertz 2012) further describe this from a technical perspective by highlighting potential spatial, temporal
and semantic inaccuracies. Nevertheless, Twitter provides a high temporal and spatial resolution, offering
a unique opportunity to gain novel insights into the spatiotemporal behaviour of humans.
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A large body of literature dealing with social media analysis from geographic and social sciences has
evolved throughout the last years. Examples span across a broad variety of fields such as the investigation
of human mobility (Hawelka et al. 2014; Lenormand et al. 2014), natural hazards and disaster management
(Crooks et al. 2013; Albuquerque et al. 2015), and geodemographics (Mislove et al. 2011; Longley et al.
2015). These research efforts are summarized by (Steiger et al. 2015a) through providing a systematic
literature review emphasizing spatial analyses of social media feeds. These authors note that one important
but prevailing shortcoming is the naïve application of existing spatial methods when conducting social
media analysis. Similar critiques including a lack of theory have recently also been raised elsewhere (Rae
and Singleton 2015), though from a less technical perspective. Most established spatial methods were
designed for datasets with different characteristics, i. e., data generated in some well-defined acquisition
processes. It is therefore questionable whether existing methodological approaches produce reliable
results. Although a majority of applied and empirical research on social media has been carried out, the
scientific community is still lacking a thorough understanding of the interplay between applied spatial
analysis methods and the specific characteristics that come with social media data.

One of the main differences between social media feeds and more traditional datasets is the data
collection process, which appears highly unstructured. Mutually independent social media users contribute
information about numerous real-world as well as fictional phenomena. To further stress the heterogeneity
argument, issues arise even within representations of single phenomena. Due to varying spatial cognition
and perception skills, user-generated data face the problem of user-induced heterogeneity (cf. Hegarty
et al. 2006; Iosa et al. 2012). Different phenomenon representations thus occur simultaneously, and their
geometric overlap leads to a disrupted topology, whereby we refer to topology as the spatial arrangement
of tweets. The result is a number of topological outliers that would not occur when only one phenomenon
would be reflected in a clear manner in the data. Intuitively, the data acquisition process of social media
thus causes spatial analysis methods to combine different actually unrelated tweets. Established density-
based clustering techniques like DBSCAN (Ester et al. 1996), for instance, include tweets that represent
different underlying phenomena. The result then is an averaged density being too high for some and
too low for other reflected phenomena. Similarly, covariance-based techniques incorporating attribute
values like Kriging (Oliver 2010) infer their spatial relationships from misleading tweet comparisons
when incorporating different phenomenon representations. In all these cases, the analysis results might
lead to wrong conclusions. Clearly, such techniques are designed for mono-categorical and spatially
exclusive datasets. The following Section ‘A motivating example’ provides an example from a London
twitter dataset indicating the abovementioned problem statement.

In this paper we investigate how topological outliers caused by the abovementioned heterogeneities
influence spatial analysis methodology in a general sense. The problem outlined above is not restricted
to any specific method, but prevalent across a range of spatial analysis techniques when applied on
highly uncertain user-generated datasets. Therefore, instead of studying any specific spatial method, we
rather investigate the underlying characteristic called spatial autocorrelation. This second-order data
characteristic drives spatial patterning and is the conceptual basis for spatial analysis (see Fischer and
Getis (2010b)). Analysing spatial autocorrelation hence guarantees a high degree of generalizability of
our results beyond the specificities of any particular technique. Table II.2.1 lists all investigations that we
conduct within this paper, including associated methodology. These tasks cover a broad range of issues
around topological outliers and the way how these influence spatial analyses.

The remainder of this paper starts out with further motivating our research (Section ’A motivating
example’) and putting it into context (’Spatial analysis and spatial heterogeneity’). We then outline
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Table II.2.1: Overview of the investigations conducted in this paper.

Scientific objectives Methods

1)

• Determination of the interplay between tweets and spatial
analysis methodology.

• Illustration of unexpected behaviour when spatially
analysing tweets.

Semivariogram,
autocovariance

2)

• Calculation and mapping of increased topological
heterogeneity caused by pattern overlap.

• Demonstration of an additionally induced topological
outlier region, which controls spatial patterning.

Eigenvalue analysis of
local spatial weight
matrices

3)

• Influence of topological heterogeneity on the distribution
of Moran’s I (a measure of spatial autocorrelation).

• Determining consequences for drawing inference about
spatial patterns.

Eigenvalue analysis of a
global spatial weight
matrix, violin plot

4)

• Discovery of effects of topological outliers on spatial
pattern quantification.

• Identification of disturbing spatial components induced by
increased topological heterogeneity.

Moran’s I, Moran
scatterplots

5)

• Determination of the role of scale differences between
overlapping patterns on spatial analysis.

• Detection of regularity and chaotic behaviour within the
disturbing components from row 4.

Serial correlation,
correlograms

some problematic covariation-based characteristics that emerge when analysing Twitter messages with
established spatial analysis methods (’Indications from the Twitter dataset’). Afterwards, we investigate
these characteristics within a simulated dataset, the latter allowing us to control different parameters such
as spatial scale and attributes. We analyse how geometric overlap influences the power characteristics of
conclusions drawn by spatial methods and how the topological arrangement pre-determines the range of
expected results (’Increased topological variability’). Afterwards, we identify interfering components
that lead to spurious and misleading analysis results (Section ’Influences on spatial autocorrelation’).
This includes an analysis of their interdependencies with scale-differences among overlapping patterns
(Section ’The roles of scale differences and the degree of overlap’). The article closes with a discussion of
the achieved results and concluding remarks, the latter including future research prospects and practical
hints for scholars employing georeferenced social media data.

II.2.1.1 A Motivating Example

Figure II.2.1 provides an example by showing geotagged tweets that occurred at the ’Trades Union
Congress House’, an umbrella organization of British labour unions headquartered in London. The tweets
and their attributes are drawn from another study that we conducted earlier (see Section ’Datasets’ for an
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Figure II.2.1: Map showing overlapping tweets in central London. The yellowish tweets represent a
semantic “work” topic described in the following section. The greenish tweets, in contrast,
were assigned a “home” topic (cf. Steiger et al. (2015b) for details on these topics). The
background map is based on OpenStreetMap data.

explanation, (Steiger et al. 2015b)). We analysed the spatial pattern of work-related tweets by comparing
them against the census workday population. For that purpose we carefully extracted latent topics. The
colours in Fig 1 represent a semantic topic: either “home” (green) or “work” topics (yellow). Considering
the work-related tweets, note the spatially overlapping variability within the yellow colour-code. We can
see that the spatial scales (i. e., the point-spacing) as well as the intensities of the topic assignments (i. e.,
the attribute values) fluctuate within small areas. This is an indicator for different phenomena or processes
being reflected within tweets. It is likely that staff, as well as visitors and the general public, report about
different work-related topics in this given area. Besides, the green home topic spatially coincides with
the work topic in the northern parts of the observed region. This area is close to a university campus.
Intuitively, students can be expected to tweet from this location. Some of their tweets deal with topics
being classified as work-related phenomena (e. g., study-related topics), while some others are instead
related to leisure activity (home-topic). This shows that both phenomena (home and work) as well as
sub-processes of these (within-colour variations) appear in a spatially overlapping manner. Thus, it can
be concluded that social media datasets are of multi-categorical nature and spatially intertwined. This
indicates an abundance of topological outliers as, unlike with non-overlapping patterns, their topology is
highly diverse. They possess geometric characteristics from at least two different processes. Further, the
overlap itself creates additional geometric characteristics. These outliers can be expected to influence the
outcomes of spatial analyses and are the starting point of this paper.

II.2.1.2 Spatial Analysis and Spatial Heterogeneity

We should first briefly articulate our problem statement in terms of traditional concepts of the field of
spatial analysis. The overlap of phenomena, to which we are referring, manifests itself as a specific type
of spatial heterogeneity. Spatial heterogeneity traditionally refers to a variable’s response to extrinsic
spatially varying environmental or socio-economic conditions. This typically leads to varying intensities,
which in turn designates spatial heterogeneity as a first-order effect (in contrast to the second-order
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effect of spatial dependence) (Sui 2004). Common forms of spatial heterogeneity are ’spatial regimes’
(patchy areas of varying intensity, abrupt changes) and ’trends’ (smooth transitions between means)
(Legendre 1993). Regimes are common in urban areas and typically resemble the local-scale variability of
such regions (Páez and Scott 2005), while trends are more important to the physical sciences (Atkinson
2001). Dealing with these kinds of spatial heterogeneity is a widely discussed topic in spatial research.
It is methodologically reflected by a range of methods such as local measures of spatial dependencies
(Anselin 1995; Getis and Ord 1992; Ord and Getis 1995), separate treatments of different regimes (Ord
and Getis 2001; Rogerson and Kedron 2012; Rogerson 2015), approaches for determining the local
scales of patches (Aldstadt and Getis 2006; Getis and Aldstadt 2004) and local regression models like
’geographically-weighted regression’ (Brunsdon et al. 1996; Fotheringham et al. 2002), ’spatial expansion’
(Casetti 1972; Casetti 1997) and a localised version of ’spatial eigenvector filtering’ (Griffith 2008).

All approaches mentioned above assume that spatially exclusive forms of heterogeneity are observed.
That is, they refer to one of the traditional types of spatial data: geostatistical data (spatially continuous
phenomena), lattice data (spatially discrete phenomena) or event data (stochastic geometries) (Cressie
1993). Event data incorporates superposition of phenomena to a certain degree, but, however, falls back
to a lattice when analysing attributes (different types of the ’mark correlation function’, cf. Shimatani
(2002)). These spatial data types are reasonable with many kinds of spatial data such as census or housing
data. The outlined Twitter example from the previous section, however, shows that social media data
typically violate the assumption of spatial exclusiveness and cannot be straightforwardly assigned to one
of the data types mentioned above. That is, with respect to spatial heterogeneity, social media data show a
novel kind of that characteristic. Spatial heterogeneity here is caused by the unstructured data acquisition
process (i. e., an extrinsic source) and is characterized by the superposition of phenomena. It expresses
itself by the formation of specific (artificial) regimes within the ’zones of overlap’. These zones appear
where different phenomena or processes coincide within data and show abnormal behaviour with respect
to statistical and topological characteristics. Just as with traditional forms of spatial heterogeneity, this
effect is likely to influence the outcomes of spatial analysis, eventually leading to spurious results. These
zones of overlap are what we target by our research.

II.2.2 Materials and Methods

II.2.2.1 Ethics Statement

Some of the data used within this study was crawled from the microblogging service Twitter. We have
eliminated all references to actual Twitter users. Therefore, the dataset is anonymised and does not violate
the privacy of actual persons.

II.2.2.2 Datasets

We use two different datasets for our analyses. One of them is a Twitter dataset consisting of georeferenced
tweets. It has been crawled through the publicly available Streaming API during a period of approximately
one year. The sample used here is an excerpt of a much larger dataset consisting of 20 Million tweets
covering Greater London, which was used in one of our previous studies (Steiger et al. 2015b). We
only leveraged explicit coordinates offered in the form of latitude-longitude tuples. This may include
GPS-derived locations as well positions determined by WiFi-positioning techniques and check-ins (see
Section ’Indications from the Twitter dataset’ for further discussion of this point). That is, we did not
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include location tags like “London, UK”. The latter would blur up the analysis scale as these do not
refer to points but to much larger polygons instead. Our pre-processing includes several natural language
processing steps such as tokenisation, stop word removal and stemming. Through these steps we remove
a great deal of potentially unnecessary noise that might disturb the analysis if not being eliminated. What
we did not remove is artefacts such as tweets contributed by bots. Removing these is still an issue of
ongoing research (e. g., (Cresci et al. 2015; Gilani et al. 2016; Mukherjee et al. 2016)). Further, we do
believe that, through our semantic treatment (see below), a lot of these artificial tweets have been removed
implicitly. The semantic modelling was done by means of Latent Dirichlet Allocation (LDA) (Blei et al.
2003), a probabilistic bag-of-words model for extracting latent topics from text corpuses. Please refer
to the paper mentioned above for a more detailed explanation of all our conducted pre-processing as
well as semantic processing steps. After preprocessing and narrowing down the scope to one latent topic
(“work”), approximately 23,000 tweets remain. The attribute used here is a percentage expressing the
degree of tweet-topic association. The chosen topic “work” represents a range of business activities and
personal reports about individual daily commute, day-to-day work experiences and similar phenomena.

The second dataset used in this paper is a simulated point pattern. It resembles an overlap of two
different spatial processes reflected within social media. Attributes attached to the points were drawn from
Gaussians. In an initial configuration, these centre on different levels of intensity (µ1 = 250, µ2 = 750)
while possessing a similar variance (σ2

1 = σ2
2 = 22, 500). Each of the involved sub-patterns shows spatial

autocorrelation of 0.81 (Moran’s I, IDW-based spatial weights). They do therefore mimic positive spatial
autocorrelation and first-order spatial heterogeneity as it is described in Section ’Spatial Analysis and
Spatial Heterogeneity’. Both involved sub-patterns operate at different spatial scales, whereby scale is
defined in terms of point spacing within this study. The smaller-scale process operates at an interval of
[40 m, 50 m], whereas the larger-scale process interacts at distances on [70 m, 80 m]. The geometries of
the patterns were generated by a random walk approach. An initial point was placed arbitrarily. Then,
starting from that point, 500 points were successively placed by choosing a random angle and distance
at each step, both of which are following a uniform distribution constrained by the abovementioned
distance intervals. In total, 1,000 points were placed. Now, by overlaying these two patterns, we simulate
an overlap as observed within the motivating example above. The degree of overlap has been chosen
such that 23.8 % of the points from the large-scale pattern interact with at least one point from the
small-scale counterpart. This idealised dataset allows us to vary the scales of the involved sub-patterns
in an archetypical way and allows controlling the attached attribute values. It thus allows isolating and
investigating different topological effects of sampling-induced spatial heterogeneity on outcomes of
spatial analysis while avoiding any cultural, socio-demographic, topographic and other kinds of extrinsic
influences (e. g., the bots mentioned earlier) that might bias the analysis outcomes. This guarantees a high
level of generalisability of the achieved results. Fig 2 provides an overview of both datasets.

II.2.2.3 Methods

Heat Map of Autocovariance Terms and Variographic Analysis

In a first step, we highlight the problem statement by means of the Twitter dataset. To achieve that we
apply two different statistical measures to our Twitter data: sample autocovariance and semivariogram
estimation. Sample autocovariance describes the degree of conformity over the mean across the realized
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Pattern 1 ("large-scale")

Pattern 2 ("small-scale")

400 m0a) b)
1500 m0

18 %
21 %
25 %
31 %
38 %
63 %

Railroad

Figure II.2.2: Overview of the two employed datasets. a) Simulated pattern, colors indicate the two
primal sub-pattern. b) Twitter data from London. The background map of b) is based on
OpenStreetMap data.

tuples of topic associations. In its spatially unweighted form, the pairwise autocovariance matrix is defined
as

SXX =
1

n
·


(x1 − x̄)2 . . . (x1 − x̄)(xn − x̄)

...
. . .

...

(xn − x̄)(x1 − x̄) . . . (xn − x̄)2


(II.2.1)

where xi and xj , in our case, denote two topic associations indexed over tweets i and j, and x̄ is their
corresponding mean. We investigate the off-diagonal elements from Equation II.2.1 by relating them to
their geographic distances measured between i and j. The result is a heat map of autocovariance mapped
against distance. This heat map allows disaggregating the overall autocovariance into its constituting
parts. The benefit of this approach is that, other than with a covariogram or a correlogram, we are neither
aggregating by distance bands nor by random variables. We thus get a detailed picture of all available
pairs of observations within their geographic context. Therefore, these pairwise comparisons reveal local
information through geographic space.

We complement the abovementioned local viewpoint by a global summarization of spatial relations.
This is done through constructing an empirical semivariogram. Let Pi ∈ R be geometric points (i. e.,
tweets) over which the topic associations xi are spatially indexed. The empirical semivariogram is then
estimated by (see Bachmaier and Backes (2008))

γ(h) =
1

2N(h)
·
N(h)∑
i,j

(xi − xj)2, ∀(xi, xj) : ‖Pi − Pj‖ ∈ (hmin, hmax) (II.2.2)

where hmin and hmax span non-overlapping distance classes h, N(h) describes the numbers of pairs of
points falling into these classes and ‖·‖ denotes the Euclidean distance measure. A semivariogram thus
describes the variance within distance classes h. Our employed distance classes have a width of 25 m.
This ensures a fine granularity and acknowledges the large numbers of tweets in dense packing.
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Both these measures, autocovariance and semivariogram, are helpful devices for demonstrating the
problem statement mentioned in the introduction. We use them to reinforce the issues underlying our
research and to show indications for spatial overlaps within Twitter. While the semivariogram comes
up with a well-understood interpretation allowing to demonstrate the unexpected behaviour caused by
overlaps, the heat map allows for explaining this behaviour in greater detail by uncovering the types of
interactions across space.

Moran’s III and Moran Scatterplot

We are interested in analysing general behaviour beyond any specific spatial methods. The universal force
underlying spatial methods is called spatial autocorrelation, which quantifies how strongly observations
relate with each other in space and how this drives patterns (Fischer and Getis 2010b). Roughly put,
spatial autocorrelation refers to “the coincidence of value similarity with locational similarity” (Anselin
and Bera 1998, p. 241). Our simulation experiments are therefore based on Moran’s I, the quasi-standard
measure of spatial autocorrelation. Moran’s I can be roughly characterised as a spatialised version of
Pearson r, restricted to observations of a single random variable. Its equation is given by (Cliff and Ord
1973)

I =
n∑n
i,j wij

·
∑n

i,j wij(xi − x̄)(xj − x̄)∑n
i (xi − x̄)2

(II.2.3)

where n denotes the overall number of observations. The factors wij denote elements of a spatial weight
matrix. This matrix captures the geographic layout of the study area and defines neighbourhood relations.
It describes how much resistance the geographic topology bears upon the covariation within the associated
attribute. We use an inverse-distance notion for our investigations, because our simulated data was
created by underlying distance theory (geometric interaction ranges, see previous section). Clearly, in any
empirical studies, the choice of weights is a crucial one and should be undertaken with care and expert
knowledge of the underlying phenomenon. Other common weight choices are summarized by (Getis
2009). Investigating how topological social media characteristics influence Moran’s I will allow us to
make more general statements about its influence on spatial methods in a broader sense.

The Moran scatterplot is a graphical device complementing Moran’s I. It was introduced by Luc
Anselin (Anselin 1996) and provides a means to disaggregate spatial autocorrelation into its distinctive
parts. Thereby, the regression line through this scatterplot is coincidental with the non-normalized Moran’s
I measure. Note that normalising over spatial weights is not necessary here, since we do not vary the
spatial layout during our study. Thus, analysing the regression line in the Moran scatterplot is tantamount
to analysing Moran’s I. For that reason, and because the graphical interpretation allows determining
sub-components of spatial autocorrelation in greater detail, we use the Moran scatterplot for analysing
systematic disturbances to the spatial pattern caused by topological outliers.

Local Eigenvalues

Analysing the topological configuration requires a measure of overlap and topological heterogeneity. For
this purpose, we divide the spatial weight matrix from Moran’s I into local submatrices and calculate
their principal eigenvalues. The principal eigenvalues of these localised submatrices represent the local
interaction potential attached to each single observation. The higher the eigenvalue, the higher is the
variability within the geographic connectivity and thus the contribution of a single spatial unit to the
entire region. In turn, high variability within pairwise connectivity relations means that a homogeneous
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pattern is disrupted by an overlap with another, eventually differently scaled, pattern. The eigenvalues
thus summarize the overall degree of overlap of observations within their local geographic context as well
as the strength of their influence contributed to spatial pattern assessments. We can calculate the spectra
of local eigenvalues for the local matrices as (Tiefelsdorf et al. 1999)−

√√√√ n∑
j=1

w2
ij , . . . , 0, . . . ,

√√√√ n∑
j=1

w2
ij

 (II.2.4)

Only the principal eigenvalues are non-zero. The importance of these eigenvalues for our investigations
is that we can use them for summarising local topological effects. They hence allow us to measure
the intensity of geometric overlap of sub-patterns because an overlap is expected to produce outlier
eigenvalues. We use this measure for analysing the topological influences of overlap on the outcomes of
spatial analyses.

Similarly, we also calculate the eigenvalues of the overall global spatial weight matrix. This matrix
comes up with n non-zero eigenvalues. Again, the principal eigenvalues are of importance, because they
determine the feasible range and the shape of the distribution of Moran’s I values (Tiefelsdorf and Boots
1997; Tiefelsdorf et al. 1999). The eigenvalues do hence predetermine the efficiency and power of Moran’s
I as a test statistic. This reinforces how crucial topological outliers are towards spatial pattern assessment
and demonstrates why we use them as a useful proxy for topological heterogeneity.

Serial Correlation and Correlogram

The eigenvalues explained above capture the geometric and topological influences that single spatial units
exert onto the entire region. Combining these with Moran’s I allows analysing how these (and especially
topological outliers) affect the detection of pattern within attributes. This involves investigating how
different parts of an overlapping pattern behave with respect to increasing scale differences of the involved
overlapping pattern. We are interested in the coherence of these effects. Only when the behaviour is
somehow tractable, analysts can try to deal these issues. Chaotic behaviour, in turn, would be hardly
treatable. Thus, we estimate the serial correlation of the slope of disturbing components from the Moran
scatterplot by means of the one-dimensional sample autocorrelation coefficient:

r(τ) =

∑n−τ
i (xi − x̄)(xi+τ − x̄)∑n

i (xi − x̄)2
(II.2.5)

where τ is the lag (here: the lag of scale differences in meters). We plot these estimates against the lag,
which is then called a correlogram. This allows investigating the behaviour of the overlap of patterns
through scale differences.

II.2.3 Results

II.2.3.1 Indications from the Twitter Dataset

Before conducting simulation experiments, we should turn our attention toward the Twitter dataset to
highlight indications for geometric overlap of different phenomena. Figure II.2.3 visualises two kinds of
information: a heat map of all pair-wise entries from the covariance matrix plotted against geographic
distance (underlying colour-coded bins) and a semivariogram (dashed line atop).



98 II.2.3.1 Indications from the Twitter Dataset

Figure II.2.3: Heat map of pairwise covariance terms and semivariogram of topic associations. The
dashed semivariogram refers to the right-hand y-axis (same line-style). The left-hand y-axis
refers to the colour-coded bins. Figure bases on the entire Twitter dataset from London, see
Section ’Datasets’.

Observe the unusual course of the semivariogram. A typical semivariogram for mono-categorical
datasets is of inclining nature when spatial effects are present. The attribute values are typically expected
to be most similar in close geographic proximity. Thus, with increasing distance, the variability increases
until the so-called ’sill’ is reached. As of that point (called ’range’) the variability levels off to the overall
variance and is no longer assumed to be affected by geographic effects. The semivariogram shown in
Figure II.2.3, however, indicates a different behaviour. It starts out at a high level of variation, and
then progresses towards a constant level. That means that values are dissimilar when they are close to
each other. At a first glance this indicates global negative spatial autocorrelation at short-ranges. The
topic associations thus seem to possess some kind of repulsion behaviour at a local scale. This kind of
association, however, is rarely observed in real-world datasets [51]. We should thus further examine this
distinctive behaviour.

The underlying heat map within Figure II.2.3 offers further insight to the notable behaviour of the
semivariogram. A significant accumulation of orange bins is observable at distances close to zero. These
indicate a large fraction of mutually unrelated tweets at very local scales. Mutually unrelated tweets,
however, do not hint on repulsion. They rather show that a great number of neighboured tweets are not
related to each other at all, being neither systematically similar nor dissimilar. Apart from that, we can
also find some indications for repulsion. Notice the small peak of blueish bins reaching downwards into
the negatives. The latter partially supports the observed hint suggested by the semivariogram: we do
indeed observe some opposed tweets in close vicinity. Besides these two findings, another important
observation from Figure II.2.3 is the high-reaching peak towards higher positive covariation. This peak
indicates tweets that are similar to each other, and thus indicate clustering behaviour caused by systematic
spatial phenomena. These latter tweets are the ones we are typically interested in when searching for
spatial pattern within social phenomena and processes. They hint on common behaviour and thus (in
the present case) semantically coherent spatial regions. It is further important to note that the heat map
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disaggregates the semivariogram. The semivariogram is based on combining multiple tweets, regardless
of their underlying phenomena. This is exactly the problem with spatial methodology which we outlined
in the introduction. The heat map, in contrast, reveals the underlying causes that ultimately lead to this
issue.

Note that Figure II.2.3 is based on all tweets that are found to be semantically associated with the topic
“work”. This includes some spatially coincident tweets, which might be due to the Twitter data collection
process (e. g., WiFi positioning techniques, Foursquare check-in data). For some kinds of investigations
one might want to keep these duplicates (e. g., when characterising places), but in some other cases one
might wish to exclude them previously. Figure II.2.20 in the appendix shows that, however, removing
these spatial duplicates does not affect the general argumentation outlined above. It only diminishes the
magnitude of spatial effects in short distance ranges. The latter is as expected, because removing spatial
duplicates is essentially a modification of extremely local tweets. Other than Figure II.2.3, Figure II.2.20
is designed in a relative fashion for the sake of comparability (the numbers of tweets are changed after the
removal process, absolute numbers are thus less effective).

In the remainder of this article we will use the controlled simulated dataset to further investigate
the consequences of such overlap on different topological aspects of tweets. This allows isolating and
controlling precisely the effects we are looking for.

II.2.3.2 Increased Topological Variability

Whenever a single pattern is observed, all points interact at only one or rather few specific scales. In
the best case the observed scales match those of the underlying phenomenon. Be it one or multiple
scales, the crucial point is that these reflect the underlying causative phenomenon. In such cases, the
variability within the relative spatial arrangement of points is relatively low and homogeneous. Most
points interact at similar or at least meaningful distances. When patterns overlap, however, points from
different patterns are positioned in close proximity to each other. These different patterns might possess
different kinds of point spacing characteristics. Thus, the topological diversity is higher and the number
of cross-pattern interactions between actually unrelated points increases. This topological diversity is
expressed by increased local eigenvalues of the spatial weight matrix as shown by Figure II.2.4 (bottom).
We should thus analyse how overlap of patterns influences these local eigenvalues.

The top row of Figure II.2.4 shows eigenvalues for a single non-overlapping pattern. The left-most
map thereby provides eigenvalues for the respective plain pattern. The two maps at the right-hand side
demonstrate the effect of two different kinds of spatial weights normalisations (C and W-coding). These
normalizations are often applied for making different spatial weight configurations comparable among
each other (see (Bavaud 2014) for an overview). It is well-known that, with non-overlapping patterns, such
normalisations lead to topological outliers (Tiefelsdorf et al. 1999). Indeed, we can see that W-coding
emphasises the boundaries of the pattern, while C-coding exaggerates its interior. The corresponding
outlier observations show a strongly increased variability. Given that the normalization procedures are
researcher-induced artefacts, such geographic layouts allow the corresponding outlier units too much
interaction with their neighbours. This disrupts subsequent spatial analyses. The plain pattern, however,
appears homogeneous. These results confirm previous research (Tiefelsdorf et al. 1999). Moreover, note
the generally low intensity of the eigenvalues in case of the plain pattern. None of the values exceeds 0.1.
This shows that only one coherent underlying phenomenon is represented by the pattern as the topological
heterogeneity is kept fairly low.



100 II.2.3.2 Increased Topological Variability

Figure II.2.4: Local eigenvalues of a single pattern (top) and a combined pattern (bottom). Please note the
differing value ranges, which are tributes to different distributions of eigenvalues across the
maps. Size classification is Jenks natural breaks.

The bottom row of Figure II.2.4 shows eigenvalues for an overlapping pattern. Again, the normalised
patterns show similar tendencies as their non-overlapping counterparts. However, some differences are
noticeable: First, the ranges of the eigenvalues reach up to a way higher intensity, especially with the
C-coded pattern where the upper bound reaches up to a value of 64. This demonstrates that geometric
overlap does not just produce outliers, but also seems to interact differently with different kinds of
normalisation techniques. Second, we can observe that, in contrast to the non-overlapping pattern, even
the plain pattern now shows a large number of outliers. The topological variability is thus already increased
by the mere fact that different patterns overlap and without having applied any normalisation. The spatial
neighbourhoods of such points are composed of different scales simultaneously, making it difficult to
adjust any proper analysis scale. The implication of these results is that, when analysing social media data,
it is highly likely to observe numerous such outliers. Moreover, overlap may place some of the points in
very close proximity at distances shorter than one distance unit. This becomes a severe problem whenever
geographic relationships are modelled by means of distance decay functions. Distance decay possesses
abnormal behaviour when distances are below one distance unit. Densely covered zones of overlap may
thus yield extreme outliers in case of pattern overlap when using distance-based specifications of spatial
interactions. This is reflected by Table II.2.2, which provides Moran’s I values for both kinds of patterns
from above.
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Table II.2.2: Moran’s I values under different weight specifications. W and C refer to row- and global
normalisation.

IDW Binary IDW
(W)

IDW
(C)

Binary
(W)

Binary
(C)

Single Pattern 0.81 0.81 0.85 0.81 0.85 0.81

Combined Pattern -1.07 0.42 0.42 -1.07 0.55 0.42

In order to compare the distance-based weights that were used above toward non-distance weights,
we additionally included a binary weighting scheme. Thereby, the upper bounds of the respective point
interaction ranges were used as cut-off distances. The attached attribute values are Gaussian as described
in Section ’Datasets’. Again, different normalisations were applied i. e., W and C). We see that the
variation across different spatial weighting schemes is relatively low for the non-overlapping pattern (top
row). As the points used here are placed relatively regular, this is in accordance to results obtained by
(Shortridge 2007), who investigated the impact of different weight configurations with regular raster-like
patterns.

In contrast, the bottom row outlines results for the combined overlapping pattern. These show marked
differences between the weight configurations. Both employed binary schemes behave relatively similar.
Contrary, the distance-based weights indicate negative spatial autocorrelation. Recall that both involved
patterns are actually positively autocorrelated through space. Thus, the extreme exaggeration of very close
but very different points possesses a huge influence on the overall result, ultimately leading to a wrong
conclusion about the spatial effects within the pattern. These results show how sensitive the topological
outliers react on the type of weights in case of overlapping patterns. Table II.2.2 underpins the importance
of a careful choice of weights when analysing geometrically overlapping social media data.

The results from above are also of importance to inferential statistics. Many global spatial statistics
like Moran’s I are defined in an averaging notion. They are defined as a weighted average of local
counterparts (in this case: local Moran’s I). This characteristic holds for all statistics and measures of
the so-called LISA type (Anselin 1995). With these methods, single outliers control global statistics
and influence their distributions. As we have seen above, these outliers are abundant within overlapping
patterns. Thus, due to their increased abundance, these cause the probability of extremely high or low
degrees of spatial association to increase artificially (Tiefelsdorf and Boots 1997). Whether high or low
values are affected thereby depends on the type of outliers observed. The latter point flaws significance
procedures and leads to wrong conclusions about spatial effects.

The investigations above are based on local eigenvalues, which were in turn calculated from local
submatrices. Combining these reveals the overall global spatial weight matrix, and, consequently, the
respective global eigenvalues. These are of importance for the detection of spatial effects, because they
reveal the shape as well as the range of the corresponding reference distribution of analysis outcomes (Jong
et al. 1984). In other words: the geographic layout determines the bounds of the strength of detectable
effects. Figure II.2.5 visualizes violin plots of these global eigenvalues for the two patterns analysed
above. The non-overlapping pattern shows a compact distribution. Half of the values including the median
accumulate around the expectation of Moran’s I, which is -0.001 in this particular case. Only few values
extend to the extremes. These further span a distinctively narrow overall range. This means that any
spatial test statistic which is evaluated on this geographic layout possesses favourable power and efficiency
characteristics, as the range of possible outcomes is kept reasonably small. Thus, the measured strength of
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Figure II.2.5: Violin plots (cf. Hintze and Nelson (1998)) for a single pattern (left) and an overlapping
pattern (right). The central box illustrates data between first and third quartile. The white
dot refers to the median.

spatial effects has little room for fluctuating toward unrealistic erroneous choices. In case of the combined
pattern we do also observe most of the values around the expectation of Moran’s I. This time, however,
the markedly broadened range along the y-axis shows that the range has been stretched towards a multiple
of the previous one. This demonstrates how strong the outliers caused by the overlap worsen the power as
well as the efficiency of spatial test statistics obtained from overlapping patterns.

II.2.3.3 Influences on Spatial Autocorrelation

A naturally arising question now is to ask for the specific consequences of the findings from above on
spatial analysis. The analysis of topological variability conducted above is concerned with the geographic
layout. However, attribute values were not yet included. A simple yet powerful tool to inspect the strength
and type of spatial associations within attributes is the so called Moran scatterplot (Anselin 1996), which
enables us to investigate how topological variability influences spatial analyses. Figure II.2.6 showcases a
Moran scatterplot for the non-overlapping pattern that was used in the previous section. A supplementary
map of the underlying attribute values as well as a corresponding histogram is found in Figure II.2.17
in the appendix. The trend line through these points stretches from the third quadrant into the first one.
This is the typical behaviour in case of positive spatial autocorrelation. It indicates that most points are
placed in geographic neighbourhoods that consist of similar points. The first quadrant thereby means that
high values are spatially surrounded by other high values (HH), while the third quadrant refers to low-low
neighbourhoods respectively (LL).

When we construct the same scatterplot for the overlapping pattern we see that a number of additional
components appear within the plot (Figure II.2.7, map and histogram in Figure II.2.18). The red points are
observations which are unaffected by pattern overlap, and thus do not interact in a cross-pattern manner.
The blue points belong to the smaller-scale process but do interact with points from the larger-scale one.
In turn, yellow points are part of the larger-scale process but interact with the small-scale pattern. The
corresponding lines demonstrate the respective trends for those three point clouds. Observe that the
small-scale points from the overlapping area add a positive component which is paralleling the red points.
The trend of this component, however, appears flatter than that of the red one. This means that, while
still being positive, the blue points weaken the strength of observable spatial effects as they pull down the
overall trend. Being even more influential, the yellow trend line shows negative behaviour. The underlying
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Figure II.2.6: Typical Moran scatterplot for positively spatially autocorrelated data. Blue line shows the
trend. HL: High-Low, LH: Low-High, LL: Low-Low and HH: High-High interaction.

points must therefore be negatively correlated with their spatial surrounding. Both these components
together obscure the real pattern which is encompassed within the data. The actually searched pattern is
inflated with numerous artificial interactions.

Why does the blue component add a positive trend, while the yellow component contributes a negative
relationship? Figure II.2.8 partly answers this question for the situation from Figure II.2.7 by showing
a magnified detail view from within the zone of overlap. We see that, in case of the small-scale points
(II.2.8a), the number of interactions with similar points (i. e., other small-scale points) is still high. That
is, although some yellow points are included, the majority of interactions still take place with other blue
points. The yellow points are less frequent, because their scale, and therefore their point spacing, is lower.
The few cross-pattern interactions between blue and yellow, however, are not without effect. They cause
the blue component to be flatter than the red one. In contrast, Figure II.2.8b shows the same situation from
a yellow component perspective. Yellow points do interact frequently with blue ones within the zone of
overlap. Since the latter operate at a different attribute value intensity (i. e., their attribute mean is higher),
these interactions in close proximity appear as repulsion behaviour. Repulsion, in turn, is indicated by
negative spatial autocorrelation. This explains why the yellow component runs downwards yet forming a
negative relationship.

Figure II.2.7 has shown two different disturbing components and Figure II.2.8 shows that these
are caused by different underlying topological constellations. In order to relate these components
to topological variation, we relate them to their associated local eigenvalues. Figure II.2.9 shows
corresponding 3D plots relating the Moran scatterplots from above to their associated local eigenvalues. In
case of a non-overlapping pattern (Figure II.2.9a), the 95 % ellipse appears slightly negatively correlated
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Figure II.2.7: Moran scatterplot for the combined pattern. Dashed lines show the trends of the similarly
coloured points.

with the eigenvalues. Thus, as demonstrated above, the behaviour is homogeneous. Figure II.2.9b reveals
that the disturbing components react differently on the degree of overlap. While the yellow component
possesses a negative relationship with the eigenvalues, the blue component tends towards a positive
connection with increasing degrees of overlap. This supports our conclusions drawn from Figure II.2.8,
because both these effects seem to become stronger with increasing local eigenvalues. Overall, the plot
shows a distinctive shape. It reveals that different parts of the overlapping pattern react in different ways
on the topological implications that come along with the overlap.

II.2.3.4 The Role of Scale Differences

The results from above unveil that geometric overlap influences the quantification of patterns. We now
turn our attention to effects that govern these influences, namely the effects caused by scale differences
between the involved patterns. We investigate this by means of testing a range of scale differences between
the involved overlapping patterns.

Influence of Scale Differences on the Numbers of Interactions

All previously stated results are based on analysing a single combined pattern. Yet, we don’t know how
differing scales of the involved sub-patterns become effective. When social media patterns overlap, they
can interact in two different general ways. One of these is a true geometric overlap. That is, a part of one
pattern might be physically overlaying a fraction of another pattern. This kind of interaction manifests
itself by an increased number of topological outliers and has been in focus within all previous parts of this
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Figure II.2.8: Interrelationships between points within the zone of overlap. a) from a small-scale perspect-
ive and b) from a large-scale perspective.

paper. The second possible way of cross-pattern interaction is a cross-wise mutual consideration of points
without physical overlap. This refers to the consideration of observations from one pattern, while having
adjusted the focus of an analysis to that of another involved pattern. This type of misleading interaction
becomes important when the two sub-patterns possess different statistical characteristics (e. g., mean and
variance). In such cases, geometric overlap leads to unrealistic mixture distributions not just within the
zones of overlap but also when two patterns are closely neighboured.

We investigate these two situations by proceeding in the following way: We first fix a point pattern
at a scale range of [1 m,10 m]. Repetitively, we translate the scale range by one meter and, for each
range, create new random patterns. We do not alter the span of the scale ranges because we don’t intend
to introduce additional uncontrolled effects. These random patterns are then moved across the surface
until an overlapping degree of 23.8 % is reached. The term “overlapping degree” thereby refers to
two perspectives: We either require 23.8 % of the large-scale points to interact with at least one point
from their small-scale counterpart (“large-scale perspective”); or adjust the target the other way round
(“small-scale perspective”). The value of 23.8 % was thereby chosen to stay in accordance with our
previous investigations above. The case of true geometric overlap is simulated by moving the patterns
until 23.8 % of points show increased local eigenvalues. Analogously, mutual consideration is achieved
by optimising the counts of interactions regardless of the eigenvalues. With increasing scale differences,
however, the target is not always reachable. In such cases we rather search for the closest solution. Overall,
we generated 9,000 patterns of this kind, 100 per scale difference. All results below are based on averaging
over these.

Figure II.2.10a describes the numbers of interactions for the case of a true geometric overlap. Both,
small as well as large-scale points do mutually interact in a similar way across scale differences. The
only notable difference between them is a differing intensity and can be explained by the generally higher
number of points per area for the small-scale process. That is, points from large-scale patterns (the
vertical bars in the background) have more small-scale neighbours in their vicinity than vice versa. This
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Figure II.2.9: Comparison between the Moran scatterplot and associated local eigenvalues. Colours are in
accordance to Figure II.2.7. Shown ellipses mark the respective 95 % confidence ellipses.
a) Ellipse for a non-overlapping pattern. b) Ellipse for an overlapping pattern. Note that the
magnitudes of the axes differ. Similar sizes were chosen for visualization purposes.

increases the general count level and leads to the observed higher count intensity. The functional decay
over scale differences cannot be described by a single function. However, we are able to identify three
different regimes. When the patterns’ scales are relatively similar, the decay follows a steep exponential
curve. Around 15 distance units of scale difference, this relationship is replaced by another, yet flatter,
exponential relationship. This function holds up to roughly 61 distance units, where it slowly vanishes
into an almost constant level. The latter transition is not an abrupt one, but rather a slow passing over
between the functional relations. The thresholds (i. e., 15 and 61 distance units) were assessed by means
of cumulatively fitting the different mentioned functions. The supplementary Figure II.2.19 provides the
result of this fitting procedure, which in turn reveals the abovementioned thresholds.

Figure II.2.10b illustrates the numbers of interactions for the case of mutual consideration. Other
than with the case of geometric overlap, we observe clear differences between large and small-scale
patterns. While the large-scale patterns show similar behaviour as within Figure II.2.10a, the small-scale
patterns show an almost constant level of interaction counts across scale differences. The few observable
fluctuations are merely attributable to the inherent randomness in the pattern generation procedure and the
general study design. The constant level is explained as follows: After a certain point (which is reached
quickly) only one point from each of the large-scale patterns is left for interaction with a fraction of
the neighboured small-scale pattern. The point spacing of the large-scale patterns simply becomes too
wide-spread to allow any further interaction. That is, the small-scale process falls completely into one of
the gaps between two points of the larger-scale process. Thus, the constancy is resultant to the interaction
of one large-scale point with a certain fraction of the small-scale points. This finding is highly relevant,
because it demonstrates that, when the patterns’ scales are too different from each other, a single point
might govern the entire assessment of spatial structure.
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Figure II.2.10: Numbers of interactions between two overlapping patterns across a range of scale differ-
ences. a) Overlapping patterns; b) Mutual involvement. Dark gray: small-scale perspective;
light gray: large-scale perspective. (1a/b) to (3a/b): fitted decay functions for sub-ranges.

Influence of Scale Differences on the Disturbing Moran Scatterplot Components

Intuitively, one might argue that the more cross-pattern interactions are observed, the more influences
can be expected when performing spatial analysis on these. The number of cross-pattern interactions at
least depends heavily on scale differences (as shown above). We should therefore investigate how the
three different components from the Moran scatterplot (red, yellow and blue) behave across increasing
scale differences between the involved patterns. For that purpose we again use the same 9,000 random
patterns as in the previous section. However, this time we additionally assign them Gaussian attributes.
These attribute values are drawn from the two Gaussians described in Section ’Datasets’. Finally, for each
pattern, we calculate the trend lines for the three components and observe their slope over increasingly
different scales of the involved overlapping patterns. Thereby, we also vary the direction of the attribute
patterns (i. e., increasing from inside to outside vs. decreasing from inside to outside).
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Figure II.2.11: Course of the slope of the red component from the Moran scatterplot. Dark-red: increasing
attribute values from pattern centre toward the boundary. Light-red: reversed attribute
dispersal. The dashed line indicates the true Moran’s I value of 0.81.

Figure II.2.11 shows two characteristic plots obtained for the red component. Recall that this
component reflects the non-overlapping parts of the involved patterns from outside the zone of overlap.
The dark-red diagram is based on attribute values that increase from centre to boundary. Contrary, the
light-red diagram reflects reversed attribute dispersal. Two differences are notable: The dark-red plot
shows a narrow principal peak, and a slow decay. In contrast, the light-red plot possesses a broader saddle,
and then decreases more steeply. The small increase in the very beginning, however, is a commonality
shared by both plots.

Now, in order to evaluate meaning and significance of these effects, keep in mind that the actual slope
of the red component is 0.81 in case of no overlap. Thus, according to Figure II.2.11, we can figure out
two types of configurations under which the slope is quite close to that target. One of these is located
at the short-range scale differences where the two patterns are almost similarly scaled (the small peak).
Here, the patterns’ interaction is marginal and cross-pattern effects are mostly caused by small fractions
of the two boundary regions overlapping each other. However, there are still many points left without any
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Figure II.2.12: Correlogram of the serial correlation at different lags for the slopes of the red component.
Dashed line indicates the 95 % confidence interval.

cross-pattern interaction. This preserves the characteristic spatial pattern of the attribute to a large extent,
and leads to an almost uninterrupted red component.

A second favourable configuration is observed when the small-scale pattern covers a fraction of
the large-scale pattern in a way such that the overall characteristic distribution of attribute values is
preserved. In a radial pattern like it is used here, this is the case whenever the small-scale pattern cuts
through the large-scale counterpart in a cross-sectional way. However, when the attribute values are
dispersed in different ways, the optimal cut-through might appear in a different fashion. Anyway, the
consequence of such overlaps is that the red component is not significantly changed in nature. The
left-over non-overlapping points do still possess the characteristic distribution of values and, to a large
extent, are able to generate a stable red component. Within Figure II.2.11, this configuration is reflected
by the two saddles at medium scale differences. The slight differences between light and dark-red within
Figure II.2.11 fall back to the type of pattern possessed within the attributes. Thereby, the way of attribute
dispersal within the small-scale pattern governs the width of the saddle at the medium scale differences.
In contrast, the attribute dispersal of the large-scale pattern is responsible for the steepness and ultimate
level of the decay at larger scale differences.

Investigating the serial correlation within the Moran-scatterplot-related slopes of the red component
across the scale differences reveals very systematic behaviour. The estimated correlogram within Figure
II.2.12 shows all possible lags across the whole range of scale differences. It appears to be distinctively
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Figure II.2.13: Course of the slope of the blue component from the Moran scatterplot. Dark-blue: increas-
ing attribute values from pattern centre toward the boundary. Light-blue: reversed attribute
dispersal.

smooth, whereas bumps and high frequency fluctuations are not observed. It further indicates two regions
in which the autocorrelation between nearby scale differences is significant at the 95 % significance
level: small lags and medium lags. Thus, as a conclusion, we observe a smooth transition and a slightly
sinusoidal seasonality over the sale differences.

The blue component reflects disturbances which are added by overlapping points originating from the
small-scale process. Consequently, Figure II.2.13 shows that the small-scale process itself is the main
driver of the shape of the slopes across the scale differences. When the pattern of the attribute values
increases from centre towards boundary (dark-blue), the component appears slightly positive as long as
the involved scales are relatively similar. As the scale differences grow larger, the component transitions
into a moderate negative behaviour. At a certain point, the pattern becomes chaotic and less predictable.
When the direction of the attribute pattern is reversed (light-blue), the course described above is also
reversed at larger scale-differences. However, when the scale ranges are more similar, the component
tends towards being negative.

The chaotic behaviour at larger differences is caused by interaction between few points. The small-
scale pattern interacts with only one or two points from the large-scale pattern at these scale differences.
Moreover, these few points do in turn interact with large parts of the small-scale pattern. Thus, if the
attribute values of these few points are somewhat extreme, a large number of either highly positively
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Figure II.2.14: Correlograms of the serial correlation at different lags within the slopes of the blue
component. a) Scale differences up to 45 m. b) Scale differences between 45 m and 90 m.
Dashed line indicates the 95 % confidence interval.

or negatively correlated comparisons are included. The quintessence is that, as off a scale distance of
approximately 45 m, the way how the patterns interact is no longer predictable with respect to the blue
component. The explained chaotic behaviour is also well reflected by the serial correlation given by Figure
II.2.14. Thereby, unlike with the red component above, we separated the correlogram into two parts. The
first of these demonstrates a coherent behaviour up to scale differences of 45 m. Here, the autocorrelation
progresses smoothly. The second one reflects the chaotic behaviour at larger differences. Clearly, the
high level of fluctuation barely allows any indication for systematic behaviour. However, Figure II.2.13
indicates that there is a slight tendency towards either positive or negative slopes for each of the two
investigated attribute patterns. That is, this tendency seems to flip when the pattern gets reversed. Further,
note the similarity of the serial correlation at small scale differences and that of the red component. This
indicates that the blue component has a strong influence on small scale differences.

In analogy to the small-scale pattern with the blue component, the large-scale pattern is the main
driver of the yellow component (Figure II.2.15). When the attribute pattern increases from centre to
boundary, the yellow component is positively dominant at small scale differences (light-yellow). When
the pattern is reversed, however, this relationship is flipped and the yellow component becomes dominant
at larger differences (dark-yellow). Interestingly, the role of the small-scale process here is to control the
direction of the component. When the small-scale attribute pattern runs opposite to the larger-scale one,
the yellow component is turned to negative either at small or large scale differences.

The serial correlation of the yellow component reveals a similar smoothness as with the blue com-
ponent. However, as none of the serial correlations is significant, this component is more volatile and
less coherent than the blue counterpart. Notice the isolated spike at small lags in Figure II.2.16a. This
isolated spike indicates that the pattern does not possess abrupt bumps, because neighbouring values
are to a certain extent similar. However, this similarity decreases quickly. Again, the clutter increases
strongly for the larger scale differences. Just like with the blue component, this unveils a two-pattern
regime (Figure II.2.16a vs. Figure II.2.16b).
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Figure II.2.15: Course of the slope of the blue component from the Moran scatterplot. Light-yellow:
increasing attribute values from pattern centre toward the boundary. Dark-yellow: reversed
attribute dispersal.

II.2.4 Discussion

The tweets from London used in our study have shown clear indications of geometrically overlapping
phenomena and processes. The derived semivariogram shows unusual behaviour and hints on repulsion,
and thus negative spatial autocorrelation at local scales. The local-scale activity is not surprising given
that urban areas are typically patchy and dense. What is surprising though is the negative (repulsion)
behaviour. Besides, the peak in the semivariogram is rather low, which indicates merely negligible spatial
behaviour in the variable (which is not plausible in an urban environment). A closer look at the pairwise
autocovariance terms and their associated geographic distances reveals that both clustering and repulsion
take place in close vicinity to each other, besides a large amount of unrelated tweets. These results
demonstrate that the spatial associations of interest (mostly those of clustering nature) may remain hidden,
and spurious spatial relationships might instead be detected. These results strongly support our initial
hypothesis of overlapping phenomena being reflected within Twitter datasets. This is, however, ultimately
leading to a violation of the requirement of second-order stationarity, whereupon many spatial-statistical
techniques are based (and so is Moran’s I, (Gaetan and Guyon 2010, p. 166)).

We analysed the artificial spatial regime that forms within zones of overlap by means of the eigenvalues
of local as well as global spatial weights. This regime is characterized by a large number of topological
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Figure II.2.16: Correlograms of the serial correlation at different lags within the slopes of the yellow
component. a) Scale differences up to 45 m. b) Scale differences between 45 m and 90 m.
Dashed line indicates the 95 % confidence interval.

outliers. These are known from traditional datasets where they occur after applying some kind of
normalization procedure (Tiefelsdorf and Boots 1997; Tiefelsdorf et al. 1999). With social media data,
however, these outliers also occur without any further modification of the data as a result of overlap. They
increase the topological variability, i. e., the overall chances for detecting spurious spatial interaction
and patterns. Further, they decrease the power as well as the efficiency of spatial test statistics, which
in turn leads to a higher risk for drawing wrong conclusions (i. e., type I and II errors). We only tested
overlapping patterns of roundish shape, which faintly limits the results to these. However, other kinds of
patterns should, by principle, behave in a similar way.

These topological outliers have impact on the detection of spatial structure by adding different kinds
of disturbances. These manifest themselves in two different ways: One disturbing component is related
to overlapping observations which belong to the smaller-scale pattern of the two investigated ones. A
second component is related to the points of the large-scale pattern respectively. Both show different
behaviours, but, however, are inherently linked. Their mutual relationship is demonstrated by their causal
mechanisms. These are both driven by interactions between the two involved patterns. Further, both kinds
of disturbances correlate with the degree of topological variation, though in different ways. One component
might correlate positively, while the other one associates in a negative way. As a result, these components
do in fact lower the strength of detectable spatial effects and might lead to misleading interpretations
of spatial patterns. Another interpretation of these nuisances from social media characteristics is to see
them as distinct spatial processes. The disturbing components come up with their own spatial interaction
behaviour and disturb the actual pattern of interest. The latter is true because they are not caused by
real-world social phenomena, which in turn get obscured by them.

Observing these disturbing components over a range of scale differences between both involved
patterns unveils several kinds of effects. First of all, the degree of mutual interaction seems to follow
several forms of exponential decay functions as scale differences increase. This decay starts out steep and
then transitions into a flatter exponential function before slowly vanishing towards an almost constant
level at very large differences. When differently scaled patterns are neighboured instead of overlapping
geometrically, small and large-scale patterns react differently. Small-scale patterns tend to interact with
few points from the large-scale process. Thus, few points govern the results of a spatial analysis in such
cases. When these considered large-scale points are extreme with respect to their attribute, any result
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might be strongly biased. In contrast, the large-scale pattern, again, shows an exponential decay like
described above.

In terms of the direction of the components (i. e., adding negative or positive spatial autocorrelation to
the Moran scatterplot), the achieved results provide a diverse picture. The red component (consisting of
non-overlapping observations) should either overlap in a way such that only smaller parts of the boundaries
of the patterns interact with each other. Another low risk option is an overlap that cuts through the attribute
values of the larger-scale pattern so that all characteristic parts of the disturbed pattern are retained in
accordance to their proportion within that pattern. In all other cases, however, the characteristics of
large-scale patterns get disturbed significantly, and results become increasingly unrealistic. However,
since we analyse positively autocorrelated data, the red component remains positive across all tested
scale-differences.

The blue and yellow disturbances (i. e., those caused by either the smaller or the larger-scale process)
behave in more complex ways. These processes are strongly dependent of the actual pattern of the attribute
value dispersal. However, as a summarising result, these components do typically provide ranges in
the scale differences at which they add negative influences. Similarly, at some other sub-ranges, these
relationships turn toward positive respectively. Further, as the scale differences between overlapping
patterns become larger, these components show increasingly chaotic, and thus unpredictable behaviour.
The latter effect is caused by interactions between only few points from a larger-scale pattern with many
of those from a smaller-scale opponent.

Our results reveal some limitations of our research. First of all, we did not remove artefacts like
bot-produced tweets from the data. These might contribute content of little explanatory power with respect
to real-world social phenomena (see Haustein et al. (2016) for their impact on altmetrics). Therefore, it
remains unknown to what extent these tweets play a role in spatial patterning. Further, we investigated a
limited number of types of spatial attribute configurations (radial, increasing attributes from inside towards
the borders and vice versa) and narrowed down the scope to an overlap of only two patterns. Apart from
topological considerations, we also held statistical properties like the means and variances of the attribute
patterns constant across our investigations. The reason for both these choices was to keep the analyses
tractable and to facilitate their interpretation, but they might play a role in the results. Moreover, we
exclusively focused on positive spatial autocorrelation given its higher practical relevance. Nevertheless,
findings about negatively correlated patterns under heterogeneous conditions caused by overlaps would be
of interest for the study of spatial outliers. From a technological perspective, we restricted our analysis to
explicit coordinates by leaving out coordinates obtained through geocoding.

II.2.5 Conclusions

Social media data reflect an ample amount of social phenomena and processes. These are likely to appear
overlapping in space and time and are prone to varying interpretations among the contributing users.
In this paper we investigate how topological effects caused by these overlaps influence outcomes of
spatial analyses. For that purpose, we first analysed the spatial behaviour of LDA-derived semantic topic
associations within a Twitter sample from London. Afterwards, we conducted a number of simulation
experiments to investigate different aspects related to the topology of overlapping point patterns. We
enriched these simulated patterns by Gaussian attribute values at different means but with similar variance.
They thus resemble a special case of spatial heterogeneity in which different regimes are not just appearing
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close to each other (the traditional notion), but form an artificial regime in-between through geometric
overlap.

To summarize our results we list the key findings in the following enumeration. These points are also
meant to raise scholars’ awareness of carefully undertaking spatial analyses of social media data:

• Increased numbers of topological outliers are found and these increase the risk of false positives and
negatives in spatial analyses on social media data. Thus, misleading indications regarding spatial
relationships within the data must be expected when using established spatial analysis methods.

• The way how spatial proximity is modelled through spatial weight matrices is crucially important
in general, but even more so with overlapping patterns. The tested configurations have shown a
large variety and thus sensitivity to this issue. Distance-based weights are extremely problematic on
that regard, since they possess extreme behaviour at short distances. The latter happens frequently
when patterns overlap.

• When differently scaled patterns overlap and when the scale differences are large, single extremal
points from the larger-scaled of the involved patterns might control the results significantly.

• When social media patterns are geometrically overlapping, the number of interactions, and thus
the chance for detecting spurious effects, decreases exponentially with increasing scale differences.
In contrast, when differently scaled patterns are just neighboured in close vicinity, the adjusted
analysis scale becomes important for the risk of including wrong observations.

• Besides scales of the involved patterns, the shape of how the attribute values are dispersed possesses
great influence on the type of interferences. These might either be expressed in terms of an additional
positive or a negative component respectively. The latter act like additional spatial processes that
interfere with the actual pattern of interest.

Future research should focus on a range of different aspects that could not be investigated exhaustively
within this paper. One of these is the pattern of the attribute values. We used two different kinds of
radially dispersed trends within each of our point patterns. However, different kinds of attribute value
arrangements might lead to different results. Our tests have shown respective indications for a tremendous
sensitivity to this issue. Further, our results indicate interaction with the kind of neighbourhood definition.
We used distance-based spatial weights and roughly tested some binary configurations. These experiments,
however, unveiled a high variation among different types of weights. This is an issue of high practical
relevance and thus deserves particular attention. Further, given their practical relevance and widespread
use, the severe behaviour of distance-based weights at short distances should be further examined with
respect to social media data as they are commonly used. This should incorporate a critical discussion of
results achieved through already conducted spatial studies of social media. Other future prospects might
include variations of statistical properties such as means and variances as well as including coordinates
from geocoded text-based information from the posted messages.

We close the article with some recommendations to researchers conducting spatial analysis with
georeferenced social media feeds. In the first place, one should check the data for signs of heterogeneities.
This should incorporate the geometric dimension (e. g., through techniques like Ripley’s K function, see
Dixon (2013)) as well as the respective attribute (techniques like local spatial heteroscedasticity (LOSH)
might be helpful (Ord and Getis 2012; Xu et al. 2014a)). As we have seen with the semivariogram in
our analysis, one difficulty is that the heterogeneity might remain hidden because of the noisy nature of
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the data. Therefore, whenever possible, the target set of observations shall be isolated as far as possible
from the rest. Clearly, this is hampered by the oftentimes exploratory character of spatial analysis. Spatial
patterns are often part of an early investigation in the hypothesis building phase when the dataset is not
well-understood. This requires the acquisition of extensive expert knowledge about the spatial aspects of
the target subject of investigation. This leads to the next recommendation which is putting vast effort in
properly designing the spatial weights. This is an essential part of each spatial analysis. However, our
eigenvalues analysis has shown that it is even more important when it comes to social media. The spatial
weights matrix needs to be constrained to the particular research needs as conservatively as possible.
In the aftermath when it comes to drawn inference, a double-check needs to be performed whether the
reference distribution under the null hypothesis is really appropriate. Again, the outliers might lead to an
unexpected shape of this distribution, which would ultimately lead the analyst to wrong conclusions.

Acknowledgements

We sincerely thank the developers of the R packages foreach, doParallel, spatstat, car, scatterplot3d and
RColorBrewer for their great software development efforts. Further, we thank Twitter for providing public
access to at least a certain fraction of their tweets.

References (Chapter II.2)

Albuquerque, J de, B Herfort, A Brenning and A Zipf (2015). ‘A Geographic Approach for Combining
Social Media and Authoritative Data Towards Identifying Useful Information for Disaster Man-
agement’. International Journal of Geographical Information Science 29 (4), pp. 667–689. DOI:
10.1080/13658816.2014.996567.

Aldstadt, J and A Getis (2006). ‘Using AMOEBA to Create a Spatial Weights Matrix and Identify Spatial
Clusters’. Geographical Analysis 38 (4), pp. 327–343. DOI: 10.1111/j.1538-4632.2006.
00689.x.

Anselin, L (1995). ‘Local Indicators of Spatial Association - LISA’. Geographical Analysis 27 (2),
pp. 93–115. DOI: 10.1111/j.1538-4632.1995.tb00338.x.

— (1996). ‘The Moran Scatterplot as an ESDA Tool to Assess Local Instability in Spatial Association’.
In: Spatial Analytical Perspectives on GIS in Environmental and Socio-Economic Sciences. Ed. by
M Fischer, H Scholten and D Unwin. London, UK: Taylor & Francis, pp. 111–125.

Anselin, L and A Bera (1998). ‘Spatial Dependence in Linear Regression Models with an Introduction to
Spatial Econometrics’. In: Handbook of Applied Economic Statistics. Ed. by A Ullah. London, UK:
CRC Press, pp. 237–289.

Atkinson, P (2001). ‘Geographical Information Science: GeoComputation and Nonstationarity’. Progress
in Physical Geography 25 (1), pp. 111–122. DOI: 10.1177/030913330102500106.

Bachmaier, M and M Backes (2008). ‘Variogram or Semivariogram? Understanding the Variances in a
Variogram’. Precision Agriculture 9, pp. 173–175. DOI: 10.1007/s11119-008-9056-2.

Bavaud, F (2014). ‘Spatial Weights: Constructing Weight-Compatible Exchange Matrices from Proximity
Matrices’. In: LNCS: Geographic Information Science. Ed. by M Duckham, E Pebesma, K Stewart
and A Frank. Heidelberg: Springer, pp. 81–96. DOI: 10.1007/978-3-319-11593-1_6.

Blei, D, A Ng and M Jordan (2003). ‘Latent Dirichlet Allocation’. The Journal of Machine Learning
Research 3, pp. 993–1022.

https://doi.org/10.1080/13658816.2014.996567
https://doi.org/10.1111/j.1538-4632.2006.00689.x
https://doi.org/10.1111/j.1538-4632.2006.00689.x
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1177/030913330102500106
https://doi.org/10.1007/s11119-008-9056-2
https://doi.org/10.1007/978-3-319-11593-1_6


References (Chapter II.2) 117

Brunsdon, C, A Fotheringham and M Charlton (1996). ‘Geographically Weighted Regression: A Method
for Exploring Spatial Nonstationarity’. Geographical Analysis 28 (4), pp. 281–298. DOI: 10.1111/
j.1538-4632.1996.tb00936.x.

Casetti, E (1972). ‘Generating Models by the Expansion Method: Applications to Geographical Research’.
Geographical Analysis 4 (1), pp. 81–91. DOI: 10.1111/j.1538-4632.1972.tb00458.x.

— (1997). ‘The Expansion Method, Mathematical Modeling, and Spatial Econometrics’. International
Regional Science Review 20 (1-2), pp. 9–33. DOI: 10.1177/016001769702000102.

Cliff, A and J Ord (1973). Spatial Autocorrelation. London, UK: Pion.
Cranshaw, J, R Schwartz, J Hong and N Sadeh (2012). ‘The Livehoods Project: Utilizing Social Media to

Understand the Dynamics of a City’. In: Proceedings of the 6th International AAAI Conference on
Weblogs and Social Media. Dublin.

Cresci, S, R Di Pietro, M Petrocchi, A Spognardi and M Tesconi (2015). ‘Fame for Sale: Efficient
Detection of Fake Twitter Followers’. Decision Support Systems 80, pp. 56–71. DOI: 10.1016/j.
dss.2015.09.003.

Cressie, N (1993). Statistics for Spatial Data. Wiley Series in Probability and Statistics. Hoboken, NJ:
John Wiley & Sons. DOI: 10.1002/9781119115151.

Crooks, A, A Croitoru, A Stefanidis and J Radzikowski (2013). ‘#Earthquake: Twitter as a Distributed
Sensor System’. Transactions in GIS 17 (1), pp. 124–147. DOI: 10.1111/j.1467-9671.2012.
01359.x.

Dixon, P (2013). ‘Ripley’s K Function’. In: Encyclopedia of Environmetrics. Chichester, UK: John Wiley
& Sons. DOI: 10.1002/9780470057339.var046.pub2.

Ester, M, H Kriegel, J Sander and X Xu (1996). ‘A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise’. In: Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining. Ed. by E Simoudis, H Jiawei and F Usama. Portland, OR:
AAAI Press, pp. 226–231.

Fischer, M and A Getis (2010b). ‘Introduction’. In: Handbook of Applied Spatial Analysis. Ed. by M
Fischer and A Getis. Heidelberg: Springer, pp. 1–24. DOI: 10.1007/978-3-642-03647-7_1.

Fotheringham, A, C Brunsdon and M Charlton (2002). Geographically Weighted Regression : The Analysis
of Spatially Varying Relationships. Chichester, UK: Wiley.

Gaetan, C and X Guyon (2010). Spatial Statistics and Modeling. Springer Series in Statistics. New York,
NY: Springer. DOI: 10.1007/978-0-387-92257-7.

Gayo-Avello, D (2012). ‘No, You Cannot Predict Elections with Twitter’. IEEE Internet Computing 16
(6), pp. 91–94. DOI: 10.1109/MIC.2012.137.

Getis, A (2009). ‘Spatial Weights Matrices’. Geographical Analysis 41 (4), pp. 404–410. DOI: 10.1111/
j.1538-4632.2009.00768.x.

Getis, A and J Aldstadt (2004). ‘Constructing the Spatial Weights Matrix Using a Local Statistic’.
Geographical Analysis 34 (2), pp. 130–140. DOI: 10.1353/geo.2004.0002.

Getis, A and J Ord (1992). ‘The Analysis of Spatial Association by Use of Distance Statistics’. Geograph-
ical Analysis 24 (3), pp. 189–206. DOI: 10.1111/j.1538-4632.1992.tb00261.x.

Gilani, Z, L Wang, J Crowcroft, M Almeida and R Farahbakhsh (2016). ‘Stweeler: A Framework for
Twitter Bot Analysis’. In: Proceedings of the 25th International Conference Companion on World
Wide Web. Ed. by J Bourdeau, J Hendler and R Nkambou. Montréal: ACM Press, pp. 37–38. DOI:
10.1145/2872518.2889360.

https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
https://doi.org/10.1111/j.1538-4632.1972.tb00458.x
https://doi.org/10.1177/016001769702000102
https://doi.org/10.1016/j.dss.2015.09.003
https://doi.org/10.1016/j.dss.2015.09.003
https://doi.org/10.1002/9781119115151
https://doi.org/10.1111/j.1467-9671.2012.01359.x
https://doi.org/10.1111/j.1467-9671.2012.01359.x
https://doi.org/10.1002/9780470057339.var046.pub2
https://doi.org/10.1007/978-3-642-03647-7_1
https://doi.org/10.1007/978-0-387-92257-7
https://doi.org/10.1109/MIC.2012.137
https://doi.org/10.1111/j.1538-4632.2009.00768.x
https://doi.org/10.1111/j.1538-4632.2009.00768.x
https://doi.org/10.1353/geo.2004.0002
https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
https://doi.org/10.1145/2872518.2889360


118 References (Chapter II.2)

Griffith, D (2006). ‘Hidden Negative Spatial Autocorrelation’. Journal of Geographical Systems 8 (4),
pp. 335–355. DOI: 10.1007/s10109-006-0034-9.

— (2008). ‘Spatial-Filtering-Based Contributions to a Critique of Geographically Weighted Regression
(GWR)’. Environment and Planning A 40 (11), pp. 2751–2769. DOI: 10.1068/a38218.

Haustein, S, T Bowman, K Holmberg, A Tsou, C Sugimoto and V Larivi?re (2016). ‘Tweets as Impact
Indicators: Examining the Implications of Automated "Bot" Accounts on Twitter’. Journal of the
Association for Information Science and Technology 67 (1), pp. 232–238. DOI: 10.1002/asi.
23456.

Hawelka, B, I Sitko, E Beinat, S Sobolevsky, P Kazakopoulos and C Ratti (2014). ‘Geo-Located Twitter
as Proxy for Global Mobility Patterns’. Cartography and Geographic Information Science 41 (3),
pp. 260–271. DOI: 10.1080/15230406.2014.890072.

Hegarty, M, D Montello, A Richardson, T Ishikawa and K Lovelace (2006). ‘Spatial Abilities at Dif-
ferent Scales: Individual Differences in Aptitude-Test Performance and Spatial-Layout Learning’.
Intelligence 34 (2), pp. 151–176. DOI: 10.1016/j.intell.2005.09.005.

Hintze, J and R Nelson (1998). ‘Violin Plots: A Box Plot - Density Trace Synergism’. The American
Statistician 52 (2), pp. 181–184. DOI: 10.1080/00031305.1998.10480559.

Iosa, M, A Fusco, G Morone and S Paolucci (2012). ‘Walking There: Environmental Influence on Walking-
Distance Estimation’. Behavioural Brain Research 226 (1), pp. 124–132. DOI: 10.1016/j.bbr.
2011.09.007.

Jong, P, C Sprenger and F Veen (1984). ‘On Extreme Values of Moran’s I and Geary’s c’. Geographical
Analysis 16 (1), pp. 17–24. DOI: 10.1111/j.1538-4632.1984.tb00797.x.

Lee, R, S Wakamiya and K Sumiya (2013). ‘Urban area characterization based on crowd behavioral lifelogs
over Twitter’. Personal and Ubiquitous Computing 17 (4), pp. 605–620. DOI: 10.1007/s00779-
012-0510-9.

Legendre, P (1993). ‘Spatial Autocorrelation: Trouble or New Paradigm?’ Ecology 74 (6), pp. 1659–1673.
DOI: 10.2307/1939924.

Lenormand, M, M Picornell, O Cantu-Ros, A Tugores, T Louail, R Herranz, M Barthelemy, E Frias-
Martinez and J Ramasco (2014). ‘Tweets on the Road’. PLoS ONE 9, e105407. DOI: 10.1371/
journal.pone.0105184.

Longley, P, M Adnan and G Lansley (2015). ‘The Geotemporal Demographics of Twitter Usage’. Envir-
onment and Planning A 47 (2), pp. 465–484. DOI: 10.1068/a130122p.

Mislove, A, S Lehmann, Y Ahn, J Onnela and J N Rosenquist (2011). ‘Understanding the Demographics
of Twitter Users’. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social
Media. Barcelona.

Mukherjee, S, A Sarkar, S Goswami and D Amit Kumar (2016). ‘A Spam Detection Study of Tweets in
Indian Healthcare’. Artificial Intelligent Systems and Machine Learning 8 (4), pp. 123–127.

Newsome, T, W Walcott and P Smith (1998). ‘Urban Activity Spaces: Illustrations and Application
of a Conceptual Model for Integrating the Time and Space Dimensions’. Transportation 25 (4),
pp. 357–377. DOI: 10.1023/A:1005082827030.

Oliver, M (2010). ‘The Variogram and Kriging’. In: Handbook of Applied Spatial Analysis. Ed. by M
Fischer and A Getis. Heidelberg: Springer, pp. 319–352. DOI: 10.1007/978-3-642-03647-
7_17.

https://doi.org/10.1007/s10109-006-0034-9
https://doi.org/10.1068/a38218
https://doi.org/10.1002/asi.23456
https://doi.org/10.1002/asi.23456
https://doi.org/10.1080/15230406.2014.890072
https://doi.org/10.1016/j.intell.2005.09.005
https://doi.org/10.1080/00031305.1998.10480559
https://doi.org/10.1016/j.bbr.2011.09.007
https://doi.org/10.1016/j.bbr.2011.09.007
https://doi.org/10.1111/j.1538-4632.1984.tb00797.x
https://doi.org/10.1007/s00779-012-0510-9
https://doi.org/10.1007/s00779-012-0510-9
https://doi.org/10.2307/1939924
https://doi.org/10.1371/journal.pone.0105184
https://doi.org/10.1371/journal.pone.0105184
https://doi.org/10.1068/a130122p
https://doi.org/10.1023/A:1005082827030
https://doi.org/10.1007/978-3-642-03647-7_17
https://doi.org/10.1007/978-3-642-03647-7_17


References (Chapter II.2) 119

Ord, J and A Getis (1995). ‘Local Spatial Autocorrelation Statistics: Distributional Issues and an Ap-
plication’. Geographical Analysis 27 (4), pp. 286–306. DOI: 10.1111/j.1538-4632.1995.
tb00912.x.

— (2001). ‘Testing for Local Spatial Autocorrelation in the Presence of Global Autocorrelation’. Journal
of Regional Science 41 (3), pp. 411–432. DOI: 10.1111/0022-4146.00224.

— (2012). ‘Local Spatial Heteroscedasticity (LOSH)’. The Annals of Regional Science 48 (2), pp. 529–
539. DOI: 10.1007/s00168-011-0492-y.

Páez, A and D Scott (2005). ‘Spatial Statistics for Urban Analysis: A Review of Techniques with
Examples’. GeoJournal 61 (1), pp. 53–67. DOI: 10.1007/s10708-005-0877-5.

Rae, A and A Singleton (2015). ‘Putting big data in its place: a Regional Studies and Regional Science
perspective’. Regional Studies, Regional Science 2 (1), pp. 1–5. DOI: 10.1080/21681376.2014.
990678.

Rai, R., M Balmer, M Rieser, V Vaze, S Schönfelder and K Axhausen (2007). ‘Capturing Human Activity
Spaces: New Geometries’. Transportation Research Record 2021, pp. 70–80. DOI: 10.3141/2021-
09.

Rogerson, P (2015). ‘Maximum Getis-Ord Statistic Adjusted for Spatially Autocorrelated Data’. Geo-
graphical Analysis 47 (1), pp. 20–33. DOI: 10.1111/gean.12055.

Rogerson, P and P Kedron (2012). ‘Optimal Weights for Focused Tests of Clustering Using the Local
Moran Statistic’. Geographical Analysis 44 (2), pp. 121–133. DOI: 10.1111/j.1538-4632.
2012.00840.x.

Sengstock, C and M Gertz (2012). ‘Latent Geographic Feature Extraction from Social Media’. In:
Proceedings of the 20th International Conference on Advances in Geographic Information Systems.
New York, NY: ACM Press, pp. 149–158. DOI: 10.1145/2424321.2424342.

Shimatani, K (2002). ‘Point Processes for Fine-Scale Spatial Genetics and Molecular Ecology’. Biomet-
rical Journal 44 (3), pp. 325–352. DOI: 10.1002/1521-4036(200204)44:3<325::AID-
BIMJ325>3.0.CO;2-B.

Shortridge, A (2007). ‘Practical Limits of Moran’s Autocorrelation Index for Raster Class Maps’. Com-
puters, Environment and Urban Systems 31 (3), pp. 362–371. DOI: 10.1016/j.compenvurbsys.
2006.07.001.

Steiger, E, J de Albuquerque and A Zipf (2015a). ‘An Advanced Systematic Literature Review on
Spatiotemporal Analyses of Twitter Data’. Transactions in GIS 19 (6), pp. 809–834. DOI: 10.1111/
tgis.12132.

Steiger, E, R Westerholt, B Resch and A Zipf (2015b). ‘Twitter as an Indicator for Whereabouts of
People? Correlating Twitter with UK Census Data’. Computers, Environment and Urban Systems 54,
pp. 255–265. DOI: 10.1016/j.compenvurbsys.2015.09.007.

Sui, D (2004). ‘Tobler’s First Law of Geography: A Big Idea for a Small World?’ Annals of the Asso-
ciation of American Geographers 94 (2), pp. 269–277. DOI: 10.1111/j.1467-8306.2004.
09402003.x.

Tiefelsdorf, M and B Boots (1997). ‘A Note on the Extremities of Local Moran’s Iis and Their Impact
on Global Moran’s I’. Geographical Analysis 29 (3), pp. 248–257. DOI: 10.1111/j.1538-
4632.1997.tb00960.x.

Tiefelsdorf, M, D Griffith and B Boots (1999). ‘A Variance-Stabilizing Coding Scheme for Spatial Link
Matrices’. Environment and Planning A 31 (1), pp. 165–180. DOI: 10.1068/a310165.

https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
https://doi.org/10.1111/0022-4146.00224
https://doi.org/10.1007/s00168-011-0492-y
https://doi.org/10.1007/s10708-005-0877-5
https://doi.org/10.1080/21681376.2014.990678
https://doi.org/10.1080/21681376.2014.990678
https://doi.org/10.3141/2021-09
https://doi.org/10.3141/2021-09
https://doi.org/10.1111/gean.12055
https://doi.org/10.1111/j.1538-4632.2012.00840.x
https://doi.org/10.1111/j.1538-4632.2012.00840.x
https://doi.org/10.1145/2424321.2424342
https://doi.org/10.1002/1521-4036(200204)44:3<325::AID-BIMJ325>3.0.CO;2-B
https://doi.org/10.1002/1521-4036(200204)44:3<325::AID-BIMJ325>3.0.CO;2-B
https://doi.org/10.1016/j.compenvurbsys.2006.07.001
https://doi.org/10.1016/j.compenvurbsys.2006.07.001
https://doi.org/10.1111/tgis.12132
https://doi.org/10.1111/tgis.12132
https://doi.org/10.1016/j.compenvurbsys.2015.09.007
https://doi.org/10.1111/j.1467-8306.2004.09402003.x
https://doi.org/10.1111/j.1467-8306.2004.09402003.x
https://doi.org/10.1111/j.1538-4632.1997.tb00960.x
https://doi.org/10.1111/j.1538-4632.1997.tb00960.x
https://doi.org/10.1068/a310165


120 II.2.6 Supporting Information

Xu, M, C Mei and N Yan (2014a). ‘A Note on the Null Distribution of the Local Spatial Heteroscedasticity
(LOSH) Statistic’. The Annals of Regional Science 52 (3), pp. 697–710. DOI: 10.1007/s00168-
014-0605-5.

II.2.6 Supporting Information

S1 Dataset. Twitter Sample

Data is available online: https://doi.org/10.1371/journal.pone.0162360.s001.

S2 Dataset. Simulated Data Used in Sections ’Influences on Spatial Autocorrelation’ and ’In-
creased Topological Variability’
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S1 Fig. Spatial Distribution of the Gaussian Attribute Values Across the Single Pattern (Top) and
Their Histogram (Bottom)

Figure II.2.17: Spatial distribution of the Gaussian attribute values across the single pattern (top) and their
histogram (bottom).
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S2 Fig. Spatial Distribution of the Gaussian Mixture Across a Combined Pattern (Top) and Their
Joint Histogram (Bottom)

Figure II.2.18: Spatial distribution of the Gaussian mixture across a combined pattern (top) and their joint
histogram (bottom).
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S3 Fig. Goodness of Fit for the Fitted Functions

Figure II.2.19: Goodness of fit for the fitted functions. Blue: exponential function; red: linear function.
Please read the fits in a cumulative way. The exponential function was evaluated from left
to right. That is, the determined optimum at 15 means that the first 15 m of the course
follow the respective function. In contrast, the red linear function needs to be read in a
reversed order. The trailing scale differences as off 61 m proceed like the fitted function.
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S4 Fig. Heat Map of Pairwise Covariance Terms and Semivariogram of Topic Associations
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Figure II.2.20: Heat map of pairwise covariance terms and semivariogram of topic associations. The
white semivariogram plotted atop of the heat map refers to the right-hand y-axis. The
left-hand y-axis is associated with the underlying colour-coded bins of the heat map. This
figure is similar to Fig II.2.3, but shows relative heat map values for reasons of comparison
(i. e., heat map values are normalised by rows). Part a) contains all tweets while part b) is
adjusted for spatial coincident tweets.



II.3 A Statistical Test on the Local Effects of Spatially Structured
Variance

Abstract

Spatial variance is an important characteristic of spatial random variables. It describes local deviations
from average global conditions and is thus a proxy for spatial heterogeneity. Investigating instability
in spatial variance is a useful way of detecting spatial boundaries, analysing the internal structure of
spatial clusters and revealing simultaneously acting geographic phenomena. Recently, a corresponding
test statistic called ‘Local Spatial Heteroscedasticity’ (LOSH) has been proposed. This test allows locally
heterogeneous regions to be mapped and investigated by comparing them with the global average mean
deviation in a dataset. While this test is useful in stationary conditions, its value is limited in a global
heterogeneous state. There is a risk that local structures might be overlooked and wrong inferences
drawn. In this article, we introduce a test that takes account of global spatial heterogeneity in assessing
local spatial effects. The proposed measure, which we call ‘Local Spatial Dispersion’ (LSD), adapts
LOSH to local conditions by omitting global information beyond the range of the local neighbourhood
and by keeping the related inferential procedure at a local level. Thereby, the local neighbourhoods
might be small and cause small-sample issues. In the view of this, we recommend an empirical Bayesian
technique to increase the data that is available for resampling by employing empirical prior knowledge.
The usefulness of this approach is demonstrated by applying it to a LiDAR-derived dataset with height
differences and by making a comparison with LOSH. Our results show that LSD is uncorrelated with
non-spatial variance as well as local spatial autocorrelation. It thus discloses patterns that would be
missed by LOSH or indicators of spatial autocorrelation. Furthermore, the empirical outcomes suggest
that interpreting LOSH and LSD together, is of greater value than interpreting each of the measures
individually. In the given example, local interactions can be statistically detected between variance and
spatial patterns in the presence of global structuring, and thus reveal details that might otherwise be
overlooked.

Keywords: Spatial analysis, Spatial heterogeneity, Spatial hypothesis testing, Spatial non-stationarity

II.3.1 Introduction

Geographic instability in statistical parameters (called ‘spatial heterogeneity’, s. Dutilleul and Legendre
1993) has long been of scientific interest. Alexander von Humboldt noted a distinctive geographic
patchiness in the 19th century(Sparrow 1999), and Darwin’s theory of evolution was largely driven by
his recognition of a geographic distribution of phenotypic variants (Jacquez 2010). Currently, scholars
from empirical research subjects such as ecology, epidemiology or sociology, leverage knowledge out of
spatial heterogeneity to either detect and specify zones of transition (e. g., transitions from terrestrial to
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aquatic habitats (Turner 1989)), to link local to global processes (Berkes et al. 2006), or to acquire a better
understanding of the ecological complexity of urban areas (Cadenasso et al. 2007).

Despite its useful properties, spatial heterogeneity plays a relatively minor role in spatial analysis
techniques, which are mostly designed for clustering. Measures of spatial autocorrelation and hot spot
techniques are prevalent, and these are used to assess associations within spatial random variables (Getis
2010). In contrast, spatial heterogeneity is often deemed to be a technical nuisance and seldom regarded
as a source of valuable information. It either requires a methodological approach (Anselin 1988a; Páez
and Scott 2005; Graif and Sampson 2009), or is considered to be reminiscent of large-scale structures
that influence local patterns (e. g., Ord and Getis 2001). Spatial heterogeneity indeed undermines the
stationarity assumptions that form the basis of many spatial techniques (Gaetan and Guyon 2010, 166 ff.).
Thus, regarding it from the standpoint of a nuisance is partly justified.

Nonetheless, spatial heterogeneity often contains useful information. A good illustration of this is
the recent investigation of the domiciles of newly arrived migrants from rural areas to Accra, Ghana
(Getis 2015). The use of spatial variance as a proxy for spatial heterogeneity allows transitional zones
to be detected between the underdeveloped and wealthy districts of the city. Incoming migrants from
rural parts of Ghana first settle in these transitional areas after they first arrive in the city. This recent
example shows that spatial heterogeneity can supply important information to investigations of complex
geographic situations, and lead to useful conclusions of both a theoretical and practical value.

Spatial heterogeneity is also important for the analysis of intrinsically heterogeneous and novel data
sources. Social media data, for instance, are sometimes called the ‘big noise’ (Lovelace et al. 2016),
because they are characterised by unstable ‘wild variance’ (Jiang 2015). The latter is characterised
by an interaction between spatial patterns and variance, which influences analysis results. Westerholt
et al. (2015) and Westerholt et al. (2016) recently found that spatial heterogeneity causes type I errors,
topological outliers and some further problems that are relevant to the spatial analysis of Twitter data.
As a result, many researchers are now investigating social media data in an attempt to mitigate its noisy
features (e. g., Sengstock et al. 2013; Lovelace et al. 2016; Steiger et al. 2016b). The investigation
of heterogeneity, however, might provide a clue about the spatial perceptions of people and help to
characterise the users’ everyday behaviours more accurately. Similar arguments hold true for the data
obtained from multi-temporal analysis. The differences between multi-temporal data acquired by ‘Light
Detection and Ranging’ (LiDAR) (Fang and Huang 2004; Tian et al. 2014), for example, are a means
of detecting heterogeneous changes in surface phenomena. When investigating the LiDAR recordings
of landslides (Jaboyedoff et al. 2012), it was found that spatial heterogeneity can provide a wealth of
information about significant morphological features like differently shaped earth deposits (Hungr et al.
2014). These two rather different examples demonstrate the potential value of investigating spatial
heterogeneity in a number of application scenarios.

Recently, a statistical measure of spatial variance called ‘Local Spatial Heteroscedasticity’ (LOSH;
Ord and Getis 2012) was put forward as a means of investigating spatial heterogeneity. LOSH assesses
the effects of spatial patterns on the variance of an attribute. It identifies regions in which the local spatial
variance deviates from the global average variability. The measure thus reveals and maps structures of the
variance that are at least partially global in nature, whereas the weaker structures that are entirely local
remain hidden. The latter only feature prominently in local circumstances but remain undetected by the
global reference framework of LOSH.

We set out a technique that extends LOSH by making it a measure for the influence of local spatial
patterns on local variance. The test, which we call ‘Local Spatial Dispersion’ (LSD), makes it possible to
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detect whether the local geographic arrangement of random variables increases or reduces the variance.
This is carried out in an entirely local manner and takes no account of global characteristics. In addition,
we propose an entirely local bootstrapping approach for drawing inferences. Drawing inferences that are
only local, however, entails limited amounts of data from small local neighbourhoods. As a means of
circumventing the problem of small-size samples within these local subsets, (which particularly arises
when adjusting small analytical scales), the inference technique includes an empirical Bayesian prediction
of additional synthetic local data. The usefulness of the proposed technique can be demonstrated by
applying it to a high-resolution 3D change detection dataset. The data is derived from a long-term
‘automatic terrestrial laser scanning station’ (ATLS) that covers a slow-moving landslide in Gresten,
Austria and provides a useful scenario because it contains both a distinct global structure and additional
local patterns.

The paper starts with a detailed review of spatial heterogeneity and spatial heteroscedasticity, and
includes a brief discussion of related statistical methodologies (Section II.3.2). Following this outline,
LOSH and our proposed measure are introduced (Sections II.3.3 and II.3.4). Then, there is a Bayesian
prediction of residuals as well as the bootstrap method for developing predictive models (Section II.3.5),
before the empirical results are discussed (Session II.3.6) and the final conclusions are drawn (Section
II.3.7).

II.3.2 Related Work: Spatial Heterogeneity and Spatial Heteroscedasti-
city

Spatial heterogeneity refers to non-uniformity and instability in geographic random variables (Dutilleul and
Legendre 1993). Their corresponding zones “where variables change rapidly” (Jacquez 2010, p. 210) are
of scientific and practical interest. They can i) represent regions of habitat use and ecological interactions
(Fagan et al. 1999; Lohrer et al. 2013), ii) assist in testing ethno-racial diversity (Abascal and Baldassarri
2015; Legewie and Schaeffer 2016), or iii) touch on the question of disease transmission (Grillet et al.
2010; Perkins et al. 2013). Spatial heterogeneity is also important for urban studies. Metaphorically
speaking, just as prices in economic markets do not ‘glide’ but often ‘leap’ (Mandelbrot and Hudson
2004), urban regions tend to be heterogeneous and disruptive in nature (Cadenasso et al. 2007). Analysing
heterogeneity is thus of crucial importance for understanding urban social processes, while an analysis
of boundaries can assist in distinguishing subpopulations. Furthermore, spatial heterogeneity provides
guidance in testing assumptions and theories about the relationships between variables (Jacquez 2010), as
well as assisting in data aggregation and dynamic modelling (Anselin 1990).

Different structural types of spatial heterogeneity are distinguishable. These are characterised by
their causal origins, maintenance mechanisms, spatial structures, and functional and temporal dynamics
(Strayer et al. 2003). Other more technical distinguishing factors include the types of investigated variables
(Wagner and Fortin 2005), the underlying spatial indexes (spatially discrete vs continuous; Anselin
2010) and even the methodological perspectives that researchers adopt (dynamic modelling vs hypothesis
testing; Fagan et al. 2003). In structural terms, heterogeneous zones sometimes condense to thin and
crisp boundaries, while they can also appear fuzzy (Jacquez et al. 2000).

For functional purposes, heterogeneous zones can act as semipermeable filters or conduits and
as devices from which spatial processes either originate or where they are impeded (Forman 1995).
Steep gradients or threshold conditions, at which variable states change suddenly, can also be found
in heterogeneous areas (Fagan et al. 2003). These characteristics allow the spatial heterogeneity to
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exert a short or long-range influence on dynamic processes (Fagan et al. 2003). Sometimes these
influences get strengthened by the interrelations between the effects mentioned earlier, especially by the
interplay between the structural and functional characteristics (Laurance et al. 2001). Hence, the various
features, together with the number of functional influences, show the importance of investigating spatially
heterogeneous zones.

Techniques to detect heterogeneous zones (especially crisp boundaries), first appeared in image
processing. Some corresponding methods have been designed for segmenting synthetic images, although
they are not capable of depicting dynamic real-world systems in their entirety (Goovaerts 2010). A range
of more suitable methods has thus evolved, including techniques based on moving split-windows (Fortin
1994; Fortin 1999; Kent et al. 1997; Kent et al. 2006), first-order derivatives (‘Wombling’ Womble 1951;
Barbujani et al. 1989; Gelfand and Banerjee 2015), second-order derivatives (Fagan et al. 2003; Lillesand
et al. 2015), spatially constrained clustering (Jacquez et al. 2000; Patil et al. 2006; Bravo and Weber 2011),
fuzzy set modelling (Arnot and Fisher 2007; Fisher and Robinson 2014), wavelets (Csillag and Sándor
2002; Keitt and Urban 2005; Ye et al. 2015) and several further parametric as well as non-parametric
techniques (Jacquez et al. 2008; Wang et al. 2016a). Another closely related research field is concerned
with integrating spatial heterogeneity with quantitative models. The respective approaches include the
following: hierarchical and Bayesian concepts (Lee and Mitchell 2012; Anderson et al. 2014; Hanson
et al. 2015), geostatistical techniques (Garrigues et al. 2006; Goovaerts 2008; Hu et al. 2015), extensions
to global spatial regression methods (Anselin 2001), and the local geographically-weighted regression
approach (Fotheringham et al. 1996; Fotheringham et al. 2002; Brunsdon et al. 1998).

In statistics, heterogeneity either refers to single parameters (e. g., mean or variance) or to complete
distributions (Kolasa and Rollo 1991; Dutilleul and Legendre 1993). Spatial heterogeneity can be
decomposed into a deterministic, random and chaotic parts (Dutilleul 2011). The deterministic part
reflects the varying average component (‘large-scale trend’), while the latter two together reflect variations
caused by variance instability (‘unstable mean deviations’) and spatial autocorrelation (‘variation through
interaction’). It is necessary to differentiate between heterogeneities in different parameters and also
between the three parts outlined above, to achieve a thorough understanding of the behaviour of random
variables and related phenomena.

In spatial analysis, varying means are analysed by hot spot techniques like the G and the O-statistic
(Getis and Ord 1992; Ord and Getis 1995; Ord and Getis 2001). By analogy, variations caused by
autocorrelation are analysed through local measures of spatial autocorrelation like the ‘Local Indicators
of Spatial Association’ (LISA, Anselin 1995). While these cases have been widely investigated, there
has been comparatively little research on variability in the variance (called ‘spatial heteroscedasticity’;
Dutilleul and Legendre 1993). Roughly speaking, spatial heteroscedasticity refers to ‘wild variance’ (Jiang
2015). Ord and Getis (2012) recently put forward a local measure called ‘Local Spatial Heteroscedasticity’
(LOSH), which assesses spatial structure in variance and is akin to a spatial χ2 test. Xu et al. (2014a)
investigated the distributional properties of LOSH and found that the χ2 approximation proposed by Ord
and Getis (2012) is not always suitable, and that a Monte Carlo bootstrap should be used instead.

LOSH is ideally suited to detecting boundary-like sub-regions lying between homogeneous regimes.
However, it cannot describe in detail how local spatial arrangements of random variables in place affect
the heterogeneity within the individual sub-regions. This is where our study is able to make a contribution
to the field because it supplements LOSH by conducting a test involving the local spatial microstructure
of the variance of georeferenced random variables.
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II.3.3 Local Spatial Heteroscedasticity (LOSH)

The LOSH measure (Ord and Getis 2012) calculates local deviations from the global average variance. It
is derived from the hot spot technique called ‘G-statistic’ (Getis and Ord 1992; Ord and Getis 1995) and
allows boundaries and hot spots of high variability to be detected. LOSH tests the following hypotheses:

HLOSH
0 : The variance in a region does not deviate markedly from its global average.

HLOSH
1 : The variance in a region deviates from overall variance homogeneity.

LOSH proceeds as follows: In the first stage, residuals that describe the difference between an attribute
value and its local spatially weighted mean value are estimated. In each location, the spatially weighted
averages of these residuals are then compared with their global counterpart. The latter is estimated
with data from all locations by randomising the spatial pattern at the same time. The calculated ratio of
these two averages then forms a test statistic from which inferences can be drawn. Let X be a set of n
real-valued random variables Xi referenced in an index set N = {1, . . . , n} that indicates discrete spatial
units. By analogy, let Ni = {j ∈ N | ∃ i ∈ N : wij 6= 0} be the local neighbourhood of spatial unit i that
can be defined by suitable spatial weights, whereby the choice of the latter depends on the application
scenario. These weights, which are given by W , a symmetric matrix of elements wij that map pairs of
spatial units to positive real weights, are a mathematical representation of the geographical layout of the
investigated region (Dray 2011). The weight matrix thereby limits the entire geographic layout to those
geographic features that are relevant to a particular phenomenon under study. These weights can be of an
arbitrary shape (s. Bavaud 2014, for an overview) and no specific form is required for the remainder.
LOSH (Hi is the notation for LOSH chosen by (Ord and Getis 2012)) then reads as

Hi =

∑
j∈N wij · |ej |a

h1 ·
∑

j∈N wij
, ej = xj − x̄j ,

x̄j =

∑
k∈Nj

wjk · xk∑
k∈Nj

wjk
, h1 =

∑
j∈N|ej |a

n

(II.3.1)

where ej is a residual about a local spatially weighted mean x̄j and h1 is the overall average residual
estimated from all the spatial units in the region. Note that Nj is the neighbourhood around unit j, that is
defined analogously to Ni. Exponent a allows different types of mean deviations to be investigated. For
the remainder of this paper, we adjust a = 2 and confine the discussion to a measure of variance.

An inference about LOSH assumes random permutations of the residuals. When an average residual
h1 is employed, it thus makes clear that LOSH assumes weak stationarity in the null hypothesis. The
successful detection of a local pattern thus depends on the global reasonability of h1. Through a random
permutation of the residuals, the statistic obtains an expected value of E[Hi] = 1 and has a variance of

Vi[Hi] =
1

n− 1
·

(
1

h1
∑

j∈N wij

)2

·

 1

n

∑
j∈N
|ej |2a −
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2
·

n∑
j∈N

w2
ij −

∑
j∈N

wij

2 . (II.3.2)
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Ord and Getis (2012) propose an adjusted χ2 approximation to the null distribution as a parametric
solution to statistical inference. The χ2 distribution stems from the design of the statistic as a spatialized
variant of the classic χ2 test for testing deviations from a hypothesised variance. This is seen by writing
out the individual terms of the sum from Equation II.3.1:

Hi =
wi1∑
j∈N wij

|e1|2

h1
+ · · ·+ wij∑

j∈N wij

|ej |2

h1
+ · · ·+ win∑

j∈N wij

|en|2

h1
. (II.3.3)

Variable h1 is the hypothesised variance and the summands are (spatially weighted) squared standardised
residuals. Under normality constraints, these are χ2 with one degree of freedom. Their sum is then χ2

with additive degrees of freedom (Cochran 1934). On the basis of the findings from Box (1953), Ord and
Getis (2012) adjust LOSH to take better account of non-normality by including the empirical variance
Vi. This matches the χ2 approximation to the observed outcomes and controls the shape of the reference
distribution. The skew and the excess kurtosis of the reference distribution are given by γ1 = 2

√
Vi and

γ2 = 6Vi, and the test statistic is Zi = 2Hi/Vi with 2/Vi degrees of freedom. However, Xu et al. (2014a)
found deviations between empirical distributions obtained from data and the adjusted approximation
outlined above. These even occur with normal variables, which is why Xu et al. (2014a) suggest adopting
a nonparametric bootstrap procedure instead.

II.3.4 Local Spatial Dispersion (LSD)

Instead of comparing local regions with a global average like LOSH, the proposed measure LSD is
concerned with the effect of the local spatial pattern on local variances. The underlying assumption is
that the way random variables are arranged geographically increases or reduces the variance, or else is
unrelated to its characterisation. The measure is only defined in a local context and does not take account
of global information. The same principle also applies for the related inference procedure, which is
conducted locally.

The proposed LSD is useful when a dataset comprises statistically differing sub-regions or when
spatially coexisting phenomena are observed. However, global information such as the average residual
h1 is not meaningful in these circumstances. This means the LOSH approach causes problems because
it is unrealistic to assume there is weak stationarity in these cases. Instead, the variance patterns might
be strongly interacting with the geographic layout locally, although they might not be recognised when
a global comparison is made with sub-regions that show a stronger dispersal. Thus LOSH cannot be
employed to assess entirely local effects and an entirely local measure of spatial variance, such as LSD,
can prove to be useful.

II.3.4.1 Hypotheses

The proposed test determines whether the local spatial arrangement of random variables increases or
reduces the local variance. The following two hypotheses for LSD are formulated:

HLSD
0 : The local geographic layout has no systematic effect on the variance.

HLSD
1 : The local geographic layout causes local over- or underdispersion.

The null model assumes that the local variance is unrelated to the geographic arrangement. If the
null is accepted, it means that the investigated data gives no indication that geographical factors are
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responsible for the variance effects. Note that variability can still be related to its particular location.
The average level of variability is still treated as a function of location. This is achieved through a local
average residual hi (see Equation II.3.5). However, LSD tests the local spatial influence on the dispersal
behaviour above the general local variability level. In conceptual terms, the hypothesis testing scheme of
HLSD

0 and HLSD
1 derives from a linear autoregressive framework. Let Ei = (|ej |a)j with j ∈ Ni be a

vector of exponentiated residuals from a local neighbourhood i with ej as defined in Equation II.3.1. Let
αi = E [|ej |a] be the expected (non-geographic) exponentiated residual within a local neighbourhood i.
The two presented hypotheses can be derived from a linear regression model:

ei = αi + ρiW
T
i Ei + εi, (II.3.4)

where ei denotes the mean deviation influenced by geographical factors, εi captures the regression residuals
and Wi is the vector of spatial weights for spatial unit i. The null model occurs when the coefficient ρi is
close to zero. Hence, LSD tests to what degree this coefficient deviates from zero. If a left-side test is
conducted, the alternative model represents a significantly negative ρi. Its acceptance thus means that the
geographic arrangement, as defined through W , reduces the variance more than it would be the case when
geographical factors have no effect. By analogy, acceptance of the alternative in a test on the right-side
indicates a significantly positive magnitude of ρi, which means that the local geography increases the
variability within the random variables. The hypotheses outlined here are thus useful devices to test the
role of geographic layout in the local dispersal behaviour of the spatial random variables.

II.3.4.2 Mathematical Definition

The LSD measure is formulated mathematically as a ratio of the spatially weighted local residuals and
their own spatially randomised local average. Therefore, LSD is given by

LSDi =

∑
j∈N wij · |ej |a

hi ·
∑

j∈N wij
, hi =

∑
j∈Ni
|ej |a

ni
(II.3.5)

where ni denotes the cardinality of Ni and hi is the local mean residual. Residuals ej are as defined in
Equation II.3.1. The term hi is a replacement of h1 and allows a strictly local analysis to be conducted.
The datasets can thus be heterogeneous with regard to mean and variance. This important difference from
LOSH is further illustrated through the relationship between LOSH and LSD (Appendix II.3.9.1):

LSDi =
Hi · h1

hi
(II.3.6)

Equation II.3.6 shows that LSD is a rescaled version of LOSH. Whenever hi equals h1, LOSH and LSD
are equivalent. This is the case when the local variability equals the global average dispersal behaviour.
LSD is particularly valuable when hi < h1, because LOSH tends to overlook these kinds of weak local
structures. In contrast, LSD adapts to specific local conditions and enables truly local variance patterns to
be investigated. On the contrary, local deviations detected by LOSH are, at least in part, caused by global
instability in the first two moments.

An intrinsically local perspective of LSD is useful in a wide range of situations: i) it can be adopted
to describe variegated geographic phenomena occurring at the same time; ii) it allows regions with
similar spatial dispersal mechanisms to be revealed beyond the variance magnitudes; iii) it can support in
constructing hypotheses regarding the causal mechanisms of phenomena that are spatially coincident; and
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iv) it is a diagnostic tool for investigating local non-stationarities. Interpreting LSD and LOSH together
should provide a clearer insight into spatial variance patterns: LOSH discloses and maps the overall global
variance volatility including distinctive boundaries, whereas LSD is able to discover the local patterning
mechanisms that influence heterogeneity in a given place. Section II.3.6 demonstrates some of these
possible uses.

II.3.5 Inference Procedure

Two issues complicate the task of making inferences about LSD: potential deviations from normality and
the constraint of having to keep the inference local. In the case of normal attributes, LSD can technically
be evaluated as a χ2 test, even though the mean and variance might vary (Walck 2007, p. 38). However,
in the light of the results of (Xu et al. 2014a), we do not want to restrict the test to normal populations
that seldom occur in real geographic conditions. Furthermore, the intended local nature of an inference
approach might cause problems by the small-size local samples. This is particularly the case when the
analytical scale is small. In such cases, there is a serious lack of data available for local resampling and
bootstrap distributions are unreliable. The χ2 approach is thus not applicable and a different inferential
strategy is required.

A two-step approach is put forward as a means of overcoming this difficulty:

1. A Bayesian prediction of synthetic data to increase the size of the local database through
(a) determining suitable prior distributions and
(b) a Bayesian updating for adjusting priors to local conditions.

2. Arranging of local bootstrap distributions using the data from step 1.

The Bayesian approach in the first stage is used to boosting the amount of available data. The purpose of
this is to predict additional local mean values, from which auxiliary residuals can be generated. These
can then be plugged into LSD during the Monte Carlo iterations in the bootstrap. The second stage
describes the final estimation of a reference distribution that is used for inference purposes. The following
sub-sections outline these two stages in more detail.

II.3.5.1 Bayesian Mean Prediction

The first part in the inferential approach is to supply the available local subsets with additional information.
This is carried out by predicting the synthetic mean values that are used for drawing additional local
residuals. The mean estimation is subject to the central limit theorem. This allows us to exploit the
advantage of well-known a priori knowledge about the underlying distributional characteristics of mean
estimations. Arithmetic means converge to normal distributions. Predicting the means is thus conceptually
simpler than drawing the residuals, and for this reason, we have chosen to follow this path rather than
predicting residuals directly.

The synthetic means are constructed through a semi-global empirical Bayesian procedure that takes
advantage of two sources of information: global information from the overall dataset and local information
from the neighbourhoods under consideration. Our proposed approach utilises the observed sampling
variability of all the observed mean estimations as prior belief. This global prior reflects strongly averaged
information. Hence, the prior belief is further adapted to local conditions by taking account of the local
features. The latter step mitigates the global averaging and fits the distribution better to the local conditions
in a particular location. In other words, the outlined two-step approach reduces the risk of adapting to
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local situations too far by taking into account the global setting (note that observed data might represent
outlier situations). At the same time, the approach does not entirely rely on global average information.

The partial inclusion of global information contradicts the stated objectives of LSD. However, the use
of global data in the auxiliary Bayesian stage, which precedes the arranging of bootstrap distributions, is
a pragmatic compromise and its influence should be kept to a minimum. Apart from predicting means,
the global information is not transferred to other parts of the inference procedure such as the bootstrap.
The alternative to using global information would be an objective Bayesian approach with an uninformed
prior. However, this could result in an excessively overfitted predictive posterior distribution as such
approach implies only using local information. In other words, the problems of uninformed objective
priors parallel those of local bootstrapping without generating any additional information. An objective
Bayesian approach would thus not address the two major issues outlined earlier. The following two
sub-sections describe the design of the prior distribution and of the updating step.

II.3.5.2 An Informed Prior

The first stage of the Bayesian predictive approach is to construct a prior that models previous knowledge
about the sampling variability of local spatial mean values. The prior must maintain realism, but, at the
same time, it should not interfere with the likelihood of the local data that is used in the posterior. That
latter likelihood will be obtained from information from the neighbourhood of interest, which must thus
then be kept for the updating step. The dual use of data might otherwise lead to a dominant prior that
drives the posterior too far, especially with small datasets (Berger 2006; Darnieder 2011; Gelman et al.
2013). The dataset is therefore subsetted. In addition to N and Ni, we define

Ni+ = {k ∈ N | ∃j ∈ Ni : wjk 6= 0}, Ni ⊆ Ni+ ⊆ N, (II.3.7a)

Ai = N \Ni+. (II.3.7b)

Subset Ni+ (Equation II.3.7a) includes the neighbours of the neighbours of unit i. Set Ai (Equation
II.3.7b) contains all the units outside the extended neighbourhood Ni+. Figure II.3.1 illustrates these
subsets.

Constructing an informed prior requires a priori distributional knowledge. While making the allowance
for global non-stationarity, it is not guaranteed that the underlying random variables Xj will be distributed
in an identical manner. However, through the central limit theorem and assuming the sample size to be reas-
onably large, it can be assumed that the spatially weighted mean values Yj =

∑
k∈Nj

wjkxk/
∑

k∈Nj
wjk

are approximately normal. We thus have Yj ∼ N(µXj , ajσ
2
Xj

), where µXj and σ2
Xj

are the unknown
expectation and variance of the variatesXNj

(i. e., the variates from Nj). The factor aj =
∑

k∈Nj
w2
jk/W

2
j

(see Appendix II.3.9.2) reflects the geographic constraints from the spatial weights matrix W . We can
ignore this latter constant for the moment but will need it later in the bootstrap.

We seek to predict the parameters µXj and σ2
Xj

. It must be remembered that the prior should be
backed up by a sufficient amount of data. Instead of estimating the parameters multiple times from small
neighbourhoods, our aim is to combine all the information from Ai. Since Ai varies across locations,
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Figure II.3.1: Schematic illustration of region N separated into Ni, Ni+ and Ai.

individual priors must be obtained for each neighbourhood. The combined mean and variance estimators
are given by (see Appendix II.3.9.3):

x̄c =

∑
j∈Ai

nj x̄j∑
j∈Ai

nj
and s2

c =

∑
j∈Ai

(nj − 1)
(
s2
j + x̄2

j

)
(∑

j∈Ai
nj

)
− nAi

− x̄2
c (II.3.8)

These estimators account for mutually overlapping spatial neighbourhoods. Variable nAi
is the cardinality

of Ai and subscript c illustrates the combinatorial nature of the proposed estimators from Equation II.3.8.
The prior is the product of the two marginal densities of mean and variance outlined above. The mean

of Gaussian random variables Yj is itself a normal random variable centred on µ0 = x̄c and depends on
knowledge of the variance:

µXj | σ2
Xj
∼ N

(
µ0, σ0 =

σ2
Xj

ni

)
(II.3.9)

Technical, but non-substantive parameters (i. e., hyperparameters) are indicated by subscript 0. Variable
ni gives the measurement scale of the neighbourhood i of interest. We use ni rather than the scale that
is actually associated with x̄c to increase the realism of the prior. The much larger cardinality of Ai

would otherwise cause the prior to be underdispersed. The influence of the prior on predictions could
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Figure II.3.2: Illustration of the prior density for ni = 10, µ0 = 11, υ0 = 5 and τ2
0 = 16.

then become overly dominant. Employing ni instead, is a means of matching the prior scale to that of the
neighbourhood of interest and is thus more appropriate.

The variance σ2
Xj

follows a normal scaled inverse-chi-squared distribution (Gelman et al. 2013, 67 f.).
This results from the χ2-distributed scaled ratio of the sample variance to the variance of the population:

(ni − 1) · s2
c

σ2
Xj

∼ χ2
ni−1 =⇒ σ2

Xj
∼ χ−2

scaled

(
υ0, τ

2
0

)
(II.3.10)

As in the case of the mean, the degrees of freedom υ0 is adjusted to ni − 1 instead of (
∑n

i=1 ni) − n,
as it is necessary for the prior to be informative about predicting data for Ni rather than Ai. The scale
parameter τ2

0 is equal to the variance estimate s2
c .

A combination of the two marginal densities from Equations II.3.8 and II.3.9 yields the prior (see
Appendix II.3.9.4)

π
(
µ, σ2

)
∝ 1

σ3+υ0
· exp

(
−ni (µ− µ0)2 − υ0τ

2
0

2σ2

)
. (II.3.11)

This prior represents the non-spatial global a priori belief about mean values estimated from samples
of size ni. It thus represents information about the variability of mean estimations from across the
entire study area beyond location i of interest. Figure II.3.2 provides a parameterised illustration of the
constructed prior density.

II.3.5.3 Posterior Distribution

The posterior combines the prior with the likelihood of the observed local spatial mean value Yi ∼
N
(
µXi , aiσ

2
Xi

)
. Our aim is to predict suitable values for µXi and σ2

Xi
. These parameters specify the
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final Gaussian from which the additional means are drawn. Constant ai is, again, fixed because it is a
non-random property of the neighbourhood of interest. The respective posterior follows a normal scaled
inverse-chi-squared distribution and yields (see Appendix II.3.9.5)

f
(
µXi , σ

2
Xi

)
∝ 1

σ4+υ0
Xi

· exp

(
−ni (µXi − µ0)2 + (Yi − µXi)

2 + υ0τ
2
0

2σ2
Xi

)
. (II.3.12)

Drawing values for µXi and σ2
Xi

requires deriving the conditional posterior µXi | σ2
Xi
, Yi and, since

this in turn requires a known σ2
Xi

, the corresponding marginal posterior σ2
Xi
| Yi. By building on the

results obtained from Gelman et al. (2013), we derive

µXi | σ2
Xi
, Yi ∼ N

(
µ0 + Yi

2
,
σ2
Xi

2ni

)
, (II.3.13a)

σ2
Xi
| Yi ∼ χ−2

scaled

(
υ0 + ni, τ̃

2
)

and τ̃2 =
υ0τ

2
0 + (ni − 1) s2 + ni

2 (Yi − µ0)2

υ0 + ni
, (II.3.13b)

where s2 is the sample variance from neighbourhood Ni. The conditional mean posterior in Equation
II.3.13a is a trade-off between prior belief and observed local information. Its mean averages the combined
means, while its scale shows that the posterior is supported by twice the amount of information, as it
is based on two separate mean estimations. The marginal variance posterior in Equation II.3.13b has
additive degrees of freedom, whereas the updated scale parameter τ̃2 combines the prior and observed
sum of squares. The latter are dilated by extra uncertainty from the deviation between the combined
means. While the two individual sums of squares in the numerator represent the variability within the
individual distributions, the additional uncertainty stems from the likelihood of both occurring together.

Equations II.3.13a and II.3.13b demonstrate that the prior and the local information each supply half
of the posterior information. The benefit of this is that the posterior is robust against inflation, which
might be caused by local boundary conditions or by extreme global imbalance.

II.3.5.4 Bootstrapping

The final methodological stage is to generate a bootstrap distribution for LSD that involves the Bayesian
procedure outlined above. In each bootstrap iteration, the following steps must be repeated:

1. random resampling with replacement within the local neighbourhoods,
2. drawing of new synthetic means and recalculation of the residuals,
3. recalculation of LSD for each drawn pseudo-sample with substituted means,
4. estimation of an empirical distribution of LSD and assessment of pseudo p-values p∗.

These four stages resemble the Monte Carlo approach outlined in (Hope 1968). A concise description of
the stages that are usually involved in this kind of approach, is also found in (Dray 2011, 129 f.). What
differentiates our approach from these two studies is that the proposed bootstrap is locally constrained.
The drawing of additional means in Stage 2 involves the Bayesian approach from Sections II.3.5.2 and
II.3.5.3 and is achieved in three phases:

1. drawing of a posterior variance σ2
Xi

from Equation II.3.13b,
2. substitution of σ2

Xi
into Equation II.3.13a and drawing of a posterior mean µXi ,

3. drawing of new mean values from N
(
µXi , aiσ

2
Xi

)
.
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The pseudo p-values p∗ that are needed for inference can then be calculated in different ways, depending
on the desired hypothesis testing scheme (Table II.3.1).

Table II.3.1: Overview of estimators of pseudo p-values p∗ for different types of hypotheses. LSDi0

denotes an observed LSD value, LSDik is the LSD value obtained from the k-th bootstrap,
m is the overall number of iterations and α is the adjusted significance level. We use # to
denote the cardinality of a set to avoid notational ambiguity.

Testing scheme Pseudo p-value estimator Interpretation of p∗ < α

Right-tailed p∗ = 1
m# {k | LSDik > LSDi0}

Geographic arrangement increases the
variance

Left-tailed p∗ = 1
m# {k | LSDik < LSDi0}

Geographic arrangement reduces the
variance

Two-tailed
p∗ = 1

m#
{
k | LSD∗ik > LSDi0

}
where LSD∗ik = |LSDik − ¯LSDik |

Geographic arrangement affects the vari-
ance

II.3.6 Empirical Results from a LiDAR-Derived Dataset

Both LSD and LOSH are applied to a subset of 4,436 height differences calculated from two co-registered
and filtered LiDAR datasets between 20th and 24th August 2016. These are taken from an ‘automatic
terrestrial laser scanning station’ (ATLS) monitoring project of daily scans, which involves surveying a
slow-moving landslide in Gresten, Austria (Figure II.3.3, cf. (Canli et al. 2015; Höfle et al. 2016)). The
height differences were obtained from the ‘Multiscale Model to Model Cloud Comparison’ (Barnhart
and Crosby 2013; Lague et al. 2013), a point-based comparison method that recognises the existence of
sampling variability and measurement error. The eastern part of the scanned area got mown in between
the two dates (a figure showing the study area before and after the mowing is provided in the online
supplementary material II.3.11). The dataset thus comprises a distinctive global structure (mown vs
unmown; diagonal dividing line) and, in addition, weaker local structures within the sub-regions. This
two-stage structure makes the data a suitable test case for LSD and LOSH. These techniques are applied
with inverse-distance weighting and a cut-off at a distance of one meter. This scheme is useful because
the observed process has a positive spatial autocorrelation and does not show abrupt changes within the
regimes. Note that the obtained results should not be understood as outcomes of an empirical investigation,
but rather as a scenario for demonstrating differences between LSD and LOSH.

II.3.6.1 Interpretation of LSD and LOSH

The results from LSD and LOSH reveal different features of variance patterns. Thus, when they are
interpreted together, it is easier to make a direct comparison. Figure II.3.4 maps statistically significant
LOSH and LSD outcomes. We randomise locally, but omit the Bayesian approach for the moment, as all
the involved neighbourhoods are sufficiently large. The smallest available neighbourhood size is ni = 8,
which allows 8! = 40, 320 permutations. The average of ni = 54, however, allows ca. 2.31 × 1, 071

permutations, which is enough for virtually all the application scenarios. Despite this, ni = 8 is still a
small number of observations and hence contains little information. The Bayesian technique thus proves
to be useful, as will be discussed in Sub-section II.3.6.5.
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Figure II.3.3: Height differences between two ATLS datasets.

The global dividing line cutting across the centre of the region, is a feature where significant LOSH
values from the right tail of the reference distribution accumulate (Figure II.3.4a). Thereby, the southern
part dominates, while the northern part of the line is influenced by a spatial gap (a gentle slope in the
terrain) which is an obstacle to high LOSH scores. Further high values are found in the mown regime, in
particular in the northernmost part (disturbances from artefacts) and in the South (these vanish when the
false discovery rate is controlled by following Benjamini and Hochberg (1995)). In contrast, the western
unmown part is dominated by significantly low LOSH values. These are caused by the global resampling
scheme of LOSH, which shifts statistically differing values from the mown part into the unmown region.
This biases the p-values towards the left tail of the bootstrap distribution and makes it impossible to
disclose local variance patterns. The eastern mown regime is not as homogeneous as expected. Grass
cuttings produced from the lawn mower were being left on the meadow. This increases the global average
residual h1 and in turn leads to a more homogeneous appearance of the unmown regime, as explained
earlier. Nevertheless, LOSH reveals and maps the global variance structure in the locality by identifying
the most (the dividing line) and least dispersed areas (the unmown part).

The LSD values (Figure II.3.4b) are more evenly distributed than the LOSH values. Unexpectedly
and in stark contrast with LOSH, the dividing line no longer appears on the map except for a small part in
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Figure II.3.4: Significant scores from (a) LOSH and (b) LSD (two-sided test; α = 0.05; 1,000 iterations).

the centre. The local spatial arrangement is thus not leading to the variability of the features and it can be
concluded that the dividing line is a truly global feature that is only caused by the existence of two different
regimes. Apart from this, the western part is no longer as homogeneous as it appeared with LOSH. LSD
reveals certain significant local features that are interspersed and like small spots of high variability within
the unmown part. The overall distribution of the LSD values is, however, rather homogeneous across the
two regimes (Table II.3.2). The structures in the mown and unmown parts therefore do not seem to differ
noticeably and behave in a relatively similar way. A different significance evaluation will be seen when
the Bayesian mean prediction is incorporated in Sub-section II.3.6.5.

Table II.3.2: Descriptive statistics for LSD scores within the mown and unmown regimes.

Regime Min Max Mean Median Standard
deviation

Interquartile
range

Mown 0.146 3.185 0.907 0.823 0.363 0.446

Unmown 0.249 4.426 0.904 0.782 0.453 0.501

In summary it can be stated that an evaluation of LOSH and LSD scores in combination reveals both
global and local variance patterns. The observed LSD values further confirm that, at least for the adjusted
analytical scale, the dividing line is a global feature. It is also clear that local structures that remain hidden
with LOSH are present in the map when LSD is considered. The LSD scores thus provide an additional
insight into the dataset.
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Figure II.3.5: Variance patterns within LiDAR-derived height differences. (a) A detailed characterisation
of local and global effects: the variance can be above the global mean and increased at a
local level by the geographic pattern (blue) or below the global mean and reduced further
at a local level at the same time (yellow). The locations can also be homogeneous from a
global standpoint while the local pattern increases the variance (dark green) or vice versa
(red), with all sorts of possible transitional effects (intermediate colours); (b) A schematic
sketch of LOSH-LSD configurations: the prevailingly local structures (I), the prevailingly
global structures (II), locally homogeneous, and globally dispersed (III), global and local
variance fluctuations (IV).

II.3.6.2 A Map of Global and Local Spatial Variance Patterns

It is worth flagging the significance of the LSD and LOSH values, but they are not exhaustive in terms of
their interpretation. The maps in Figure II.3.5 thus provide a classification scheme for LOSH-LSD tuples.
Four standard gradients can be derived from these, each characterising different sub-regions in the map.

Figure II.3.5 shows a way to classify LOSH and LSD outcomes together. A prominent feature in
Figure II.3.5a is, again, the dividing line (see also type II gradient in Figure II.3.5b). The figure, however,
shows the line in more detail: The centre of the line appears to be narrow and elongated and reflects the
thin crisp edge of the boundary where the two regimes meet. The spatial pattern strongly increases the
variance in this from both a global and local standpoint. Adjoining this is a fuzzy region where local
spatial effects are negligible, while the spatial variance is generally high in a global comparison. In other
words, while the global variance gradient features prominently, the local spatial variance pattern is closer
to randomness and regularity. The local geographic arrangement is thus not related to the increased
variance in these regions.

When one moves farther away from the dividing line, the effects prevail at a local level. The variance
structures turn into insular regions of small areas where the local pattern increases the variance, which are
surrounded by a homogenising geographic arrangement (type I). The northern part, which is affected by
artefacts, is further characterised by two volatile variance patterns (types III and IV). The type III pattern,
which is featured in the north-eastern part, is caused by a larger haystack. This appears to be regular in
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local terms (its internal structure), but is disruptive globally as it is a prominent feature (above the global
mean variance). In contrast, the type IV pattern reflects taller bunch grass that is characterised by abrupt
fluctuations between regular and heterogeneous conditions caused by the related clumps of culms. An
interpretation that combined LOSH and LSD made it possible to distinguish these rather different features
in the data.

The detailed interpretations given above, demonstrate the additional value that LSD provides. Global
structures are detected and mapped locally by LOSH where these dominate, but local details are missed
out. In contrast, LSD assesses local structures and describes in greater detail the internal structure of
global features (e. g., the nature of the central boundary or of the homogeneous sub-regions). The measure
thus not only assesses different structures, but also reveals additional information about features obtained
from LOSH.

II.3.6.3 Interplay with Variance

Since both LSD and LOSH are measures of variance, it is worth investigating how they relate to the
magnitude of the non-spatial local variance. This illustrates the ability of LOSH and LSD to separate
effects of spatial patterning from other influences of general variability.

The design of LOSH implies there is a strong dependence on general local variability through its
constant denominator. When a sub-region is generally diverse, the prospect of assessing high LOSH scores
is also high, regardless of the local spatial patterning. Figure 6a illustrates this link, and Kendall’s Tau-b,
an ordinal correlation measure that accounts for non-normality and ties, gives further support through
a strongly significant test score of τ = 0.679 (p < 0.001). However, this relationship is not uniform
since LOSH is more dispersed when the local variability is stronger. Regressing LOSH on variance and
conducting a non-parametric Koenker-Bassett test (Koenker and Bassett 1982; Godfrey 1996) on the
residuals, confirms the heteroscedasticity that is visible in Figure II.3.6a. The two diverging quartile trend
lines in the biquantile regressogram (Figure II.3.6b) underpin this outcome, while the median trace shows
that variance is a good predictor of LOSH. The measure is thus dominated by non-spatial variability. This
result is in accordance with the intended purpose of LOSH to detect both the most and least dispersed
regions in geographic data. However, it also shows that LOSHs power to detect solely spatial effects in
local circumstances is limited.

In contrast, Figure II.3.7a shows that LSD is only weakly related to variance (τ = 0.023, p < 0.001),
and the median trend line in the regressogram (Figure II.3.7b) represents a relationship that varies with the
strength of LSD. Variance is a sufficient predictor of LSD when it is strong and when, at the same time, the
influence of the spatial patterning is weak (i. e., the right part of the scatter plot in Figure II.3.7a). However,
the ascending slopes of the median, as well as the quartile trend lines (Figure II.3.7b) show that variance
systematically overestimates high LSD scores. The spatial pattern thus dominates the (more interesting)
high LSD values. These characteristics are desirable properties: LSD only has a negligible link with local
variance, while extremal outcomes are controlled by the spatial effects that they are supposed to quantify.

II.3.6.4 Relationship with Spatial Autocorrelation

The two measures quantify different aspects of ´dissimilarity’ within random variables. As mentioned in
Section II.3.2, spatial autocorrelation represents an additional, covariance-based dimension of heterogen-
eity. Local estimators like local Moran’s I (Anselin 1995) can be used to quantify spatial autocorrelation,
and Figure II.3.8a shows its relation to LOSH. The Moran interval [0.0, 1.4] shows a significant negative



142 II.3.6.5 Influence of the Bayesian Prediction of Mean Values

−
5

0
5

< 0.65 1.30 - 1.95 2.60 - 3.25 3.90 - 4.55 5.20 - 5.85

Predicted LOSH

R
e
s
id

u
a

ls

Local variance

0.0120.0080.0040.000

0
2

4
6

L
O

S
H

(a) (b)

Figure II.3.6: Relationship between LOSH and local variance. (a) A scatter plot of variance and LOSH;
and (b) A biquantile regressogram (Tukey 1977) illustrating heteroscedasticity in LOSH.

relationship (τ = 0.27). LOSH is high when the association between neighbours is random and low
when observations occur in a clustered form. Both measures therefore, to some extent, highlight similar
structures from different perspectives (variance vs. covariance). Observations showing autocorrelations
higher than 1.4 belong to the northern artefacts and thus can reasonably be regarded as outliers, that do
not conform to the general observations made above. Overall, LOSH reveals roughly similar structures to
those of Moran’s I, as is evident from their antipodal behavioural pattern.

In contrast, LSD is almost unrelated to Moran’s I, when the latter is on the interval [0.0, 1.4]. Most
of the data points accumulate on the left side of the scatter plot in Figure II.3.8b without showing any
notable trend (τ = −0.09). This strengthens the likelihood indicated above that LSD is able to reveal
patterns that cannot be detected by LOSH and Moran’s I. These detected patterns are not linked to the
clustering tendency of the attribute values. Rather, they are features in their own right, which makes them
of value for empirical investigations since they might supply important details about the disclosure of the
mechanisms in spatial random variables.

II.3.6.5 Influence of the Bayesian Prediction of Mean Values

The Bayesian procedure from Section II.3.5 extends local resampling by the use of synthetic data generated
from empirical prior knowledge combined with local information. This approach differs from conventional
bootstrapping that only relies on observed information. There is a need to investigate how the Bayesian
approach influences drawn inferences.

Figure II.3.9 shows a sigmoidal relationship between conventional p-values (i. e., those that were
used in the previous paragraphs) and those involving synthetic means. They show a strong monotonic
association of τ = 0.77 at medium ranges. There is a significant fall in this association in both tails
(τ = 0.23), which is an important observation as the tails possess values which are important for drawing
inferences. In the Bayesian approach, the p-values tend to concentrate around the extremes of 0 and 1. In
contrast, conventional p-values show a higher level of dispersion in the tails. This is caused by the number
of available observations, which have limited explanatory power because they only represent a small
fraction of all possible values. In contrast, the Bayesian approach extends this spectrum, which increases
its ability to detect spatial effects because the comparative values are not biased towards a certain range.
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Figure II.3.7: Relationship between LSD and local variance. (a) A scatter plot of variance with regard to
LSD; and (b) a biquantile regressogram (Tukey 1977) illustrating heteroscedasticity within
LSD.

The increased ability to detect effects with the Bayesian approach is further evident after the p-values
have been corrected for multiple hypothesis testing. Note that LSD tests n hypotheses with one dataset.
This repeated use of the data leads to an increase in the type I error rate and requires correction. When the
false-discovery rate is controlled at α = 0.05 (FDR; Benjamini and Hochberg 1995) and the p-values are
corrected accordingly, it is seen that the non-Bayesian approach is very conservative. Only 0.5% of all the
null hypotheses are rejected, which is way below the significance level that was envisaged. In other words,
many actual effects might be missed out. In contrast, when the Bayesian-generated p-values are adjusted,
they yield a ratio of 5.2%, which is close to the desired α level.

Figure II.3.10 illustrates the FDR-corrected p-values of significant observations by incorporating the
Bayesian-generated means. The significant features in the eastern part (the ‘mown’) show a general North-
South bearing (Figure II.3.10a) and resemble the direction of the mowing process, which is illustrated
in the background of II.3.10b through a hill-shading raster. The blue features, where the geographic
layout reduces the variance, either accumulate alongside the small piles of hay that were left on the
meadow or in the furrows in-between. In contrast, the western part (the ‘unmown’) is not affected by the
after-mowing topography. The patterns of significant features observed in this part are mostly unrelated
to the hill-shading. This makes sense given that the height differences that were analysed are affected
by physical, biological and other factors that do not necessarily correspond to the topography shown in
Figure II.3.10b, especially in the unmown area.

A comparison of Figure II.3.10 with Figure II.3.4b shows that the conventional p-values generated
from the local bootstrapping, do not show the features described above. In fact, there is no noticeable
difference between the mown and unmown parts in this case. The p-values generated by the inclusion of
predicted means are closer to the phenomenon (especially in the mown part) and can thus be considered to
be of greater value. Hence, this comparison implies that the proposed Bayesian approach is a reasonable
alternative to more conventional forms of pseudo p-value estimation.
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Figure II.3.8: The relationship of LOSH and LSD with local Moran’s I. The logarithms of the two
measures were chosen to improve interpretability. The red line represents a first-order
LOESS trend. (a) LOSH; and (b) LSD.

II.3.7 Discussion and Conclusions

This paper introduces a test called ‘Local Spatial Dispersion’ (LSD), which is able to determine the local
influence of geographic arrangements on variance. It does not incorporate global information and allows
local patterns to be detected in the presence of a global structure. The strictly local nature of the test,
however, increases the risk of problems arising from small-size samples within local neighbourhoods. To
mitigate this risk, a stratified bootstrapping procedure is introduced that combines traditional resampling
with a Bayesian prediction of synthetic data. The proposed LSD supplements LOSH, which is a recently
devised technique to map global variance structures locally. The measure adapts LOSH to strictly local
circumstances. Conceptually, LSD forms a part of a series of localised techniques like the hot spot method
called ‘O-statistic’ (Ord and Getis 2001), or locally adaptive geometric clustering techniques such as the
inhomogeneous marked and unmarked K-functions (Cuzick and Edwards 1990; Baddeley et al. 2000).

Its application to a dataset for height differences derived from LiDAR data demonstrates the ability of
LSD to detect local patterns within a distinct global structure. An interpretation combined with LOSH
reveals further characteristic variance patterns, which would not have been detected by using either
measure alone. Furthermore, the obtained results show that LOSH is closely correlated with general
non-spatial variability, which hampers the separation of genuinely spatial from other effects. In contrast,
LSD is uncorrelated with non-spatial variation and is capable of exposing entirely spatial variance effects.
Notably, LSD is also unrelated to positive spatial autocorrelation. This allows the measure to assess other
complex patterns apart from general attribute clustering, such as the internal structures of clusters and
the detailed contours of geographic boundaries. The proposed inference mechanism further facilitates
the detection of local structures. While conventional stratified bootstrapping turns out to be overly
conservative, the synthetic expansion of the available local data keeps the α-rate in compliance with the
adjusted significance level, which increases its ability to detect meaningful patterns. Overall, LSD has
been shown to be a useful extension to the spatial analysis toolbox. In the given example, it is possible, in
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statistical terms, to detect local interaction between variance and spatial patterns within global structures
and thus to disclose details that would otherwise have been overlooked.

The anonymous reviewers pointed out that there was a relationship between the proposed LSD
technique and local variograms. Variograms quantify the variance of the spatial increment between two
locations separated by a certain distance (Bachmaier and Backes 2008; Cuba et al. 2012). Both, LSD
and variograms are thus concerned with variance estimation. What differentiates them is that LSD is a)
a hypothesis test designed to determine the influence of a specific spatial arrangement on variance and
b) that it is concerned with in-place variance rather than with the variance of the incremental process.
In contrast, variograms estimate variance within certain distance bands by relying on the validity of the
employed spatial weights (instead of testing their influence). The estimates of the variograms are then
used for modelling (e. g., in Kriging), which means that our proposed test can be used as a diagnostic
tool for geostatistics. For instance, LSD can be used to fully investigate the possible sources of local
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Figure II.3.10: Significant LSD scores involving Bayesian-predicted means (two-sided test; α = 0.05;
1, 000 iterations). (a) Map of significant features. (b) Schematic sketch of significant
accumulated features, against the background of the hill-shading of the surface after the
mowing.

non-stationarities, which might lead to a lack of stationarity in the difference processes between locations.
Thus, LSD might also be a useful device in the area of geostatistics.

However, there are some shortcomings in this paper that could not be addressed. One of these is
that our data only have a positive spatial autocorrelation. A negative spatial autocorrelation is different
in nature, since it involves a certain degree of heterogeneity, which in turn is related to variance. An
interesting relation between LSD and negative spatial autocorrelation might thus exist, which would
be worth exploring in a systematic way in a future research project. In terms of inference, the forms
adopted for the prior and likelihood are strongly supported by the central limit theorem and leave little
room for variation. However, the way that the prior and likelihood enter the posterior distribution, need
to be analysed with regard to suitable combinations other than the applied ‘half-and-half scheme’. For
instance, an adaptive solution could be useful, in which the likelihood is given more weight in larger
neighbourhoods that are backed up by a more solid database. In terms of LOSH, our empirical results show
a strong heteroscedasticity with regard to local variance. Future research should therefore seek to achieve a
variance stabilisation in order to make the outcomes of LOSH more robust for inhomogeneous populations
and assist its interpretation. From a technological standpoint, the proposed solution is computationally
expensive as it includes bootstrapping. The application of LSD to large datasets would hence clearly
benefit from an efficient implementation strategy. All in all, LSD provides the means of obtaining a
valuable and detailed insight into variance mechanisms of geographic random variables and offers the
prospect of achieving significant new empirical results in various fields.
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II.3.8 Supporting Information

S1 Fig. Overview of the investigated study area

Figure II.3.11: The investigated study area in Gresten, Austria, before and after the mowing.

II.3.9 Appendix

II.3.9.1 A1. Relationship between LOSH and LSD

The ratio between LOSH and LSD is given by

Hi

LSDi
=

1
ni

∑
j∈Ni
|ej |2 ·

∑
j∈N wij |ej |2 ·

∑
j∈N wij

1
n

∑
j∈N|ej |2 ·

∑
j∈N wij |ej |2 ·

∑
j∈N wij

=
n · hi∑
j∈N|ej |2

= hi · h−1
1 .

From this, LOSH and LSD can be inferred:

Hi =
LSDi · hi

h1
and LSDi =

Hi · h1

hi
.

The ratio above shows that LSD can be turned into LOSH and vice versa, demonstrating that both measures
represent a scaled version of the respective other.

II.3.9.2 A2. Expectation and variance of spatially weighted mean estimates

The mean and the variance of the spatially weighted mean estimates Yj are affected by the spatial
weighting structure. Let {Xk} be independent real random variables indexed over the neighbourhood
set of spatial units Nj . Let further {wjk} denote the set of spatial weights upon Nj that sums up to
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Wj =
∑

k∈Nj
wjk, and Yj = (1/Wj)

∑
k∈Nj

wjkxk be a local spatial average as defined in Equation
II.3.1. Under local randomisation the expectation E [Yj ] is given by

E

[
1

Wj

] ∑
k∈Nj

wjkXk =
1

Wj

∑
k∈Nj

wjkE [Xk] =
1

Wj

∑
k∈Nj

wjkµXj = µXj .

The location of the mean is thus not affected by the spatial weights. Note that the weighted sample mean
is a linear combination (wj1/Wj)X1 + · · · +

(
wjnj/Wj

)
Xnj of independent random variables (i. e.,

local independent under the randomisation assumption of H0 of LSD). The variance of Yj is therefore
obtained by applying the rule for the variance of linear combinations of independent random variables,
which is given by V ar [

∑
k akXk] =

∑
k a

2
kV ar [Xk], and thus for Yj yields

V ar [Yj ] =
∑
k∈Nj

(
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σ2
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= σ2
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(
w2
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W 2
j

)
.

Unlike the mean value, the variance is scaled by the weighting scheme. The above relationship for the
variance is demonstrated for the ordinary unweighted case through substituting 1 for each weight wjk.
Their sum then yields nj and the above equation reduces to the variance of the unweighted sample mean

σ2
Nj

∑nj

k=1

(
12/n2

j

)
= σ2

Nj
/nj .

II.3.9.3 A3. Averaging of several local variances

The variance of a random variable X is generally given by the shift rule V ar [X] = E
[
X2
]
− E [X]2.

We already determined the estimator of E [X]2 in Equation II.3.8, which is x̄2
c . The estimator of E

[
X2
]

takes the form
∑n

i=1 x
2
i /n, though it must take into account the grouping in the data (i. e., the spatially

overlapping neighbourhoods). To simplify the following steps, the Bessel correction of the unbiased
sample variance s2

n−1 is reversed first:

ṡ2 =

(
n− 1

n

)
s2
n−1 =

1

n

n∑
i=1

(xi − x̄)2 =

(
1

n
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x2
i

)
− x̄2.

From this, the corresponding sum of squares is obtained:

n
(
ṡ2 + x̄2

)
=

n∑
i=1

x2
i .

This sum of squares can be split up into a series of partial sums. For the case of partly overlapping spatial
neighbourhoods this gives

∑
i∈N1

x2
i + · · ·+

∑
i∈Nn

x2
i . Each of these summations can be represented

through their respective local sample variance and local mean value. We get that∑
i∈Ai

∑
j∈Ni

x2
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∑
i∈Ai

ni
(
ṡ2
i + x̄2

i

)
,
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and the substitution of this back into V ar [X] = E
[
X2
]
− E [X]2 yields

ṡ2
c =

∑
j∈Ai

nj

(
ṡ2
j + x̄2

j

)
∑

j∈Ai
nj

− x̄2
c .

In order to obtain an unbiased result, we reverse the previous elimination of the Bessel correction. The
rescaled version of ṡ2

c is
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II.3.9.4 A4. Derivation of the prior

The prior combines the two marginal densities
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where Γ is the gamma function. If all normalising constants are omitted, the prior is obtained as follows:
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II.3.9.5 A5. Derivation of the posterior

The observed data Yi ∼ N
(
µXi , σ

2
Xi

)
is described by the normal likelihood function

f
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=
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.

The multiplication of this likelihood by the prior from Appendix II.3.9.4 yields the following posterior
density:
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After again omitting all normalising constants, we arrive at

f
(
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2
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∝ 1
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,

which is the non-normalised posterior density.



II.4 Integrating Geographic Information into Survey Research:
Current Applications, Challenges and Future Avenues

Abstract

Geographic information science (GIScience) offers survey researchers a plethora of rapidly evolving
research strategies and tools for data acquisition and analysis. However, the potential for incorporating
geographic information systems (GIS) tools into traditional survey research has not yet been fully
appreciated by survey researchers. In this article, we provide a comprehensive overview of recent
advances and challenges in leveraging this potential. First, we present state-of-the-art applications of
GIS tools in traditional survey research, drawing mainly on examples from psychological survey research
(e. g., socioecological psychology). We also discuss innovative GIS tools (e. g., wearables) and GIScience
methods (e. g., citizen sensing) that expand the scope of traditional surveys. Second, we highlight a
number of challenges and problems (e. g., choice of spatial scale, statistical issues, privacy concerns)
and—where possible—suggest remedies. With increasing awareness of the potential that GIS tools hold for
survey research, and intensified dialogue between researchers from both sides, more fruitful collaboration
appears within reach.

Keywords: GIScience, GIS Tools, Socioecological Psychology, Wearables, Social Media

II.4.1 Introduction and Overview

II.4.1.1 Relevance of Geospatial Aspects

Recent advances in integrating geographic information science (GIScience) into psychology and survey
methodology may be considered evolutionary by some researchers and revolutionary by others. Some
observers view these advances as a paradigmatic shift that justifies the term “spatial turn” (e. g., (Richard-
son et al. 2013)). At any rate, the sheer number of new research strategies and geographic information
system (GIS) tools can be daunting, and it is hard for those outside GIScience to keep pace with recent
developments. Perhaps for this reason, psychology has, for the most part, been slow to adopt some of
the promising innovations offered by GIScience and related disciplines (see Appendix for a glossary of
terms). There is the danger of a widening gap, if not detachment, between scientific communities in terms
of concepts, methods, and tools.

To avoid this pitfall, we think it is vital to inform survey researchers in general, and psychological
researchers in particular, about the methodological potential that GIS tools (e. g., techniques for acquiring,
analysing, and visualising geographic data) hold. Although in-depth discussions of single geospatial
techniques abound, an up-to-date integrative overview of these innovations is absent from the literature.
The present paper is the first to offer such an overview from the perspective of GIScientists and psycho-
logical researchers practically involved in the application of GIS tools in survey research. We restrict
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our overview to those GIScience techniques that concern the analysis of survey data, that is, techniques
that augment traditional surveys by incorporating geospatial information, or that complement traditional
surveys by providing new forms of data and data analysis. We do not consider how GIScience techniques
can be used to improve traditional survey methodology (e. g., for monitoring field work and interviewer
behaviour, or for designing sampling frames and weighting schemes).

The purpose of our paper is twofold. First, it is intended as a starting point for survey researchers
interested in applying innovative GIS tools in their work. Despite the rise of other approaches (e. g.,
neuroscientific methods, computer-based cognitive tests), questionnaires and population surveys are
still among the most widely used tools for collecting data on individuals and social groups, notably in
psychology. Second, we hope to foster an informed discussion between two inherently methodological
disciplines—GIScience and survey research. We encourage researchers from both sides to critically
examine and make use of solutions offered by each field, to develop a common theoretical framework,
and to adopt each others’ insights, tools, and methods. Such an intensified dialogue, we believe, may
challenge our traditional understanding of survey data and methodology, thus paving the way for future
innovations in survey research (see Warf and Arias (2009)).

Yet why should survey researchers consider spatial aspects at all? Geospatial information might
be useful at various stages of the survey design. Surveys can be supplemented with geographic co-
ordinates, such as the location at which a respondent completed the questionnaire (i. e., the point of
origin) or where the respondent predominantly lives (i. e., place of residence). Either respondents’ exact
geographic locations or their approximated locations (e. g., via regional codes) may be available. These
geographic coordinates can then be used to incorporate contextual data into subsequent analyses. For
instance, socioeconomic data on households in a neighbourhood, or regional divorce rates as a proxy for
individualisation in a society, may be contextual variables and may complement individual-level data
analyses (Lechner et al. 2017). Geographic visualisation techniques may also provide additional insights
into the spatial distribution of survey results. By analysing and mapping biophysiological data from study
participants who wear trackable devices while moving through space (Tröndle et al. 2014), or by plotting
Twitter-based information almost in real time to geographic maps (Curini et al. 2015), researchers can
follow social processes at unprecedented spatiotemporal resolutions.

II.4.1.2 Survey Concepts

It is vital to note that the understanding of the term “survey” often differs between survey researchers
and GIScientists. For survey researchers, the survey questions—augmented with georeferenced data—
are typically meant to reveal information about individuals. Spatial information (e. g., location-related
information) is added to better understand humans or social systems. Survey researchers often operate
with a survey definition that involves the collection of data from a sample of elements drawn from a
well-defined population through the use of a questionnaire (Visser et al. 2000). Hence, “a survey can be
seen as a research strategy in which quantitative information is systematically collected from a relatively
large sample taken from a population” (Leeuw et al. 2008, p. 3). GIScientists, by contrast, typically focus
on extracting information about places and spaces (e. g., street corners, cities, regions, or countries) and
the phenomena and developments they undergo over time. For them, survey questions add information
from a human perspective to better understand the environment. Yet GIScientists often endorse a rather
minimalistic definition of “survey” as a method of gathering information from any sample of individuals
(Scheuren 2004). Their broader term may include gathering data en passant from social media users,
rather than collecting answers from survey respondents.
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Section II.4.2 illustrates the breadth of potential applications of GIScience methods and GIS tools in
survey research. These applications include the augmentation of classic survey data with georeferenced
information, on the one hand, and new techniques to obtain spatiotemporally distributed data from
GIScience, on the other. In Section II.4.3, we outline a number of challenges shared by most of these
applications. They include, for example, spatial scale usage, the modifiable areal unit problem, the
arbitrary nature of maps and visualisation techniques potential pitfalls in the analysis of contextual data,
fallacies when dealing with different levels of analysis (individual and aggregate data); issues surrounding
user-generated data, and privacy and data protection issues. Where possible, we make methodological
recommendations to deal with these challenges. Finally, in Section II.4.3, we also consider how traditional
survey data and methodology may be of benefit to GIScience.

II.4.2 Recent Applications of GIS Tools to Augment Survey Data

Before we begin our overview of recent applications, let us follow Agnew and Livingstone (2011)
and Tuan (1977) and clarify the distinctions between important GIScience terms that readers may
or may not be familiar with: space, location, and place. Space is understood as an abstract, non-
semantically enriched geographic space spanning planet Earth, in which processes of interest occur.
Location demarcates a specific point or area in this space, mostly delimited by crisp boundaries, which
can be represented in GIS. In contrast, place is defined as space infused with human meaning. As this
meaning is almost never specified with perfect intersubjectivity, its borders are often fuzzy and ambiguous.
Several scientific disciplines deal with these concepts. The methodological companion to geography is
geographic information science, or GIScience (Goodchild 1992; Goodchild 2010). GIScience and GIS
tools are closely related, and they provide partly overlapping innovations (see Appendix II.4.5.1).

Augmenting classic survey data with georeferenced data represents a first way in which geographic
information about individuals and their backgrounds is utilized in the social sciences (Hoffmeyer-Zlotnik
2013; Okner 1972; Schnell 2013b). Survey datasets that are geocoded—that is, datasets that contain one
or more variables assigning a geographic location (e. g., an exact location or a more coarse location such as
a postal code or an administrative unit) to each response unit—can be merged with geotagged contextual
information, thereby greatly enhancing the value of these augmented datasets to investigate new research
questions (Meyer and Enzler 2013; Okner 1972; Schnell 2013b). To take the Swiss Environmental
Survey as an example, regional statistics on environmental factors (e. g., pollution, emissions) were linked
to respondents’ subjective impressions of environmental stress to gain a better understanding of the
relationship between objective contextual variables and participants’ subjective responses (Diekmann and
Meyer 2010). By adding contextual information to individual respondent data, cross-level relationships
can be explored (Hoffmeyer-Zlotnik 2013; RatSWD 2012). Rich contextual data are now offered by
various public institutions (e. g., register, census, and economic data), private organisations and companies
(e. g., operational and customer-tracking data), and accumulated sources (e. g., social media, representative
surveys; for a comparison, see Hüttenrauch (2016)). Some public-use surveys, such as the European
Social Survey (ESS), already include a large number of contextual variables at different geographic levels
(e. g., national and regional migration, or unemployment rates) in their data distributions, and make these
data readily available to researchers. Furthermore, various kinds of geospatial data have become publicly
available, for instance, authoritative topographic data (e. g., OpenStreetMap). The following sub-sections
describe possible applications of these contextual data in research.
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II.4.2.1 Socioecological Psychology

The emerging field of socioecological psychology, also known as geographic(al) psychology (for reviews,
see Rentfrow (2013) and Oishi (2014)), utilises the new possibilities of integrating contextual information
and traditional survey data. Socioecological psychology directs attention to how objective (as opposed to
perceived) features of macro-level social ecologies (i. e., physical, interpersonal, economic, or political
environments) shape human behaviour, cognition, and emotion—and how human behaviour, in turn, gives
rise to changing social ecologies (“niche construction”). Extant socioecological studies mostly relate
individual-level psychological outcomes to socioecological variables that are measured at (not aggregated
to) the national or regional level and that assume the role of a predictor of individual-level variability
(e. g., Talhelm et al. (2014)) or a moderator of individual-level relationships (e. g., Jokela et al. (2015) and
Lechner et al. (2017)). For example, Talhelm et al. (2014) were able to show how the agricultural legacy of
regions in China shapes the cultural and psychological traits of these regions’ inhabitants until the present
day; they found that a history of farming rice was linked to more interdependent traits, whereas a history
of farming wheat was linked to more independent cultural patterns. Other socioecological studies extend
this focus, investigating the spatial distribution of psychological constructs and their contextual-level
correlates. The level of analysis in the latter strand of studies is thus a geographic one: Individual survey
responses (such as answers to a Big Five personality battery) per geographic unit are aggregated in order
to map them to spatial contexts and link them to each other (Rentfrow et al. 2015) or, alternatively, to
external data sources such as health statistics (Kitchen et al. 2012) or entrepreneurship rates (Obschonka
et al. 2013).

Although socioecological psychology is still in a nascent state, it already exerts a noticeable influence
on psychological theorising. Socioecological studies are contributing to a gradual shift in the traditional
focus on the individual toward a more environmentally informed understanding of the discipline’s key
phenomena. (Arguably, this marks a veritable “spatial turn”, especially in the fields of personality
psychology and social psychology.) While this development opens up new avenues for collaboration with
disciplines at the interface of human behaviour and geography (Rentfrow 2013; Oishi 2014), it also brings
methodological challenges, which will be discussed later.

II.4.2.2 Survey Responses as a Function of Georeferenced Indicators

Geographic context can also be used to identify (and correct for) sources of variance in survey responses.
Depending on one’s focus, such variance may represent either explained variability or nuisance variance
in survey responses. For example, participants’ life satisfaction scores might be influenced by (a) aspects
of the natural environment, such as the greenness of neighbourhoods (Leslie et al. 2010), (b) the built
environment (McGinn et al. 2007), or (c) circumstances of the survey location, such as indoor versus
outdoor interviewing (Iosa et al. 2012).

A prime application of this approach is the influence of weather on mood and well-being. With
governments increasingly adopting well-being as a policy target, subjective ratings of life satisfaction
and happiness are often important indicators that complement panel data on regional and macroeconomic
factors (Schyns 1998) (for a recent Eurobarometer analysis, see Brulé and Veenhoven (2014)). For
well-being to inform public policy choices, one would like to be sure that any regional differences in
average well-being ratings are truly related to economic prosperity and other policy-relevant factors, rather
than being driven by “nuisance” factors such as the climate at survey locations (Rehdanz and Maddison
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2005; Brulé and Veenhoven 2015) or by transient weather conditions during interviews (Schimmack et al.
2002).

Laboratory and field evidence has shown that judgements of life satisfaction are influenced by the
reported weather conditions (Schwarz and Clore 1983), and that ambient temperature ratings, in turn,
depend on people’s current mood (Messner and Wänke 2011). Although this cross-sectional evidence
was challenged by panel data (Lucas and Lawless 2013; Schmiedeberg and Schröder 2014), more recent
panel data providing detailed information on all relevant weather variables at the precise location and
time of an interview have, in fact, revealed variation in life satisfaction scores as a function of weather
(Feddersen et al. 2016). Beyond well-being, studies have shown that Big Five trait ratings can also be
influenced by contextual factors such as weather (Rammstedt et al. 2015). Increasing spatial granularity
yields better evidence on climatic and weather influences on survey responses. It may become possible to
purge respondents’ mood, well-being, or life satisfaction ratings of unwarranted nuisance variance and to
obtain unbiased scores that offer a more solid ground for policy decisions.

II.4.2.3 Experience Sampling in Dynamic Contexts

Methods of studying individuals in their natural settings—often in real time, on repeated occasions, and
free of retrospective biases—offer tremendous potential for survey research. One such method—and one
that has recently gained some popularity—is the experience sampling, or event sampling, method (ESM;
Reis and Gable (2000)), which allows respondents to be surveyed in their natural environments on repeated
occasions (Larson and Csikszentmihalyi 1983; Hektner et al. 2007). ESM prompts participants (e. g., via
mobile devices) to take a survey at fixed time intervals or randomly throughout the day. In this way, the
likelihood of events, the base rate of behaviours, or the prevalence of feelings can be surveyed amidst
temporal fluctuations of experiences and dynamic transitions between places. The recent emergence of
mobile electronic devices allows even large crowds to be observed at nearly any time and place so as to
investigate relationships with increased ecological validity (Shiffman 2007).

There are three typical ESM procedures—signal-contingent (survey after notification via pager or
SMS text message), event-contingent (recording data after predefined events have occurred), and interval-
contingent (data acquisition after periods of time have passed)—whose respective (dis-)advantages have
been described elsewhere (Conner and Barrett 2012). Here, we would like to stress that adding a spatial
layer to this threefold distinction allows context-aware ESM to be used. Augmenting ESM data with
location data (e. g., Global Positioning System (GPS) coordinates gathered by users’ mobile devices)
offers a convenient way of conducting surveys at predetermined locations (which allows further data
to be gathered about these locations as socially relevant places). Location data might help to explain
individuals’ attitudes and behaviours. These data include not only static factors, such as types of buildings
or population density, or rather stable influences such as unemployment rates, but also each individual’s
exposure to noise at specific workplaces, stressful traffic encounters at specific intersections, etc.

So far, traditional population surveys mostly abstract from the dynamic contexts in which respondents
generate their responses, or in which they have experiences that they report only later. From this
perspective, survey samples must first and foremost mirror the population. However, it is worthwhile
reflecting on the fact that any interview represents a mere snapshot of a respondent’s state of mind
generated within a specific spatiotemporal slice of the environment. Population surveys typically leave
such short-term volatility and spatial dynamics of survey responses unmonitored. By linking ESM
data to rich contextual information such as location and time, survey research proceeds to the next
stage, where human characteristics are explained as a function of idiosyncratic events, personal contexts,
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and participants’ spatial transitions. Research in health-related and occupational fields has started to
incorporate these new possibilities (Sonnentag et al. 2012; Richardson et al. 2013)—for instance, by using
ESM to investigate whether environmental factors, such as rare exposure to nature, might influence mental
health (Reichert et al. 2016).

II.4.2.4 Objective Data Capture by Means of Wearables

While ESM focuses on the subjective experiences that respondents have over any pre-specified time span,
these data can be amended with objective data on the same individuals. There has recently been a rapid
rise in the use of wearable sensors to measure a number of physiological parameters (e. g., heart rate
variability, blood pressure, or skin conductance; Swan (2012)). These sensors, together with the increasing
penetration rate of smartphones across age groups, have paved the way toward virtually ubiquitous data
acquisition and have opened up new opportunities for obtaining information about the environment
(Triantafyllidis et al. 2017).

For example, the so-called quantified-self movement promotes the use of sensor technology for
acquiring data about one’s own daily life, ranging from concrete physiological parameters to rather
abstract parameters such as physical performance and associated affective consequences (e. g., emotional
states). This movement is reinforced by the rapid development of wearable sensors that allow for
continuous surveillance of everyday activities and daily routines (Swan 2013). Although people are
joining the quantified-self movement mainly to achieve self-awareness through self-monitoring (Ayobi
et al. 2016), it has also led to rising awareness of physiological sensor devices among the wider public.
As a result, citizens’ familiarity with the use of sensors has dramatically increased. This is of particular
importance for survey research, as most of the sensor-based quantified-self applications are explicitly
geolocated, which allows survey data to be complemented with additional data from wearables at high
temporal and spatial resolution, thereby yielding information that cannot be obtained by simply asking
survey questions. Physiological signals obtained from wearable sensors can then be used to make
inferences about individual experiences that are associated with, or can be mapped to, events and places
in the environment. For instance, one could compare a survey intended to identify dangerous traffic
intersections in a city with a study that captures heart rate and blood pressure data from drivers, cyclists,
and pedestrians. This may help to identify city areas or spots of increased stress levels other than those
identified by participants’ subjective ratings. Sufficiently rich data may allow the emotional experiences
of future pedestrians, cyclists, or motorists at the same location to be predicted, thus enabling a more
citizen-centric planning of city infrastructure (Resch et al. 2015c).

II.4.2.5 Humans as Proactive Sensors (Rather Than as Respondents)

User-generated data are by no means limited to physiological data from wearable sensors that are collected
for a specific purpose and under the researcher’s control. A number of new approaches elicit, observe, or
analyse information generated by individuals (and groups) that are hardly under the control of a researcher.
Instead, participants act more and more as researchers of their own affairs, and thus control over the
data-generation process is increasingly left to them. GIScience capitalises on this trend.

Citizen sensing describes a unique measurement approach in which persons do not merely deliver
reports but rather act as non-technical, context-aware sensors with situational intelligence and extensive
background knowledge about their present location (Resch 2013). Specifically, citizens are asked to
provide their impressions, perceptions, and observations about a well-defined issue with explicit reference
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to geographic space. Akin to ESM, people provide their subjective recordings through eDiaries, which are
designed to be context-aware. Contextualised reports can be gathered through dedicated smartphone apps
(Triantafyllidis et al. 2017).

A recent example is the collection of citizens’ subjective feelings and emotions about different
places in the city (Resch et al. 2015a). Participants who move in geographic space are equipped with
a smartphone app for reporting sensations and impressions—for instance, about traffic safety or public
safety. Each dataset is associated with location and timestamp, which enables spatiotemporal analysis of
the data. Apart from an immediate glimpse of a geographic context, this allows for an analysis of changes
in ecosystems as continuously monitored through citizen-sensing technologies. Rather than acting as
mere respondents to questionnaires, this approach empowers participants to proactively report not only on
their spatial transitions but also on changes in ecosystems themselves.

One methodological implication of this survey method is that data are unlikely to be fully reproducible
(Sagl and Resch 2014). From a survey research perspective, data reproducibility may not even be a goal
(the data always present slices of information tied to time and context); yet from a GIScience perspective,
the aim is to obtain (stable or reliable) information about the environment. Moreover, given users’ proactive
role in generating responses, the sampling and data generation processes are not necessarily controlled,
and the observations are highly idiosyncratic. The reliability of such a measurement procedure is a far cry
from that of representative population surveys with regular waves, or calibrated wearable sensors that
produce measurements in well-defined physical settings. With high volatility in the sampling process, one
problem is how to generalise to a whole population from self-selected samples who themselves determine
what snapshots in time to deliver and when. In Section II.4.3, we elaborate on challenges common to
survey research and GIScience.

II.4.2.6 Spatiotemporally Distributed Information in Social Media

Social media represent a useful resource for complementing survey data (Hill et al. 2013; Murphy et al.
2014). In contrast to citizen sensing, the analysis of data from social media does not require additional
survey infrastructure (eDiary apps, digital surveys, etc.). Rather than surveying individuals about specific
locations, this approach analyses aggregated, anonymised data from collective sources such as Flickr,
Twitter, Foursquare, or the mobile phone network (Resch 2013). In this manner, information can be
gained about the situational awareness of human environments and temporal dynamics on the basis of
human communication, without attributing data to specific individuals. Social media posts reveal people’s
thoughts, emotions, or activities in geographic space, time, and linguistic space (Steiger et al. 2016b).

Although unprompted social media posts cannot be considered to be interviews in the formal sense of
the word, people still provide “answers” (to questions that are not asked by an interviewer) by stating
their perceptions and opinions. Yet, in contrast to classic surveys, it is more difficult to correctly map the
target population. It may be difficult (albeit possible) to gauge opinions among specific subpopulations
(Pötzschke and Braun 2016). However, it is almost impossible to get a representative picture of the entire
general population. Therefore, social media data cannot replace targeted and structured surveys. Yet they
are a useful extension, and they can yield additional insights (e. g., via content analysis and text mining)
that are not bound to pre-formulated questions and researcher-determined response categories. Instead,
the focal topic can be determined by the social media user; the information obtained there is not elicited in
a “synthetic situation” of a formal interview; and with regard to both the amount of content and its format,
the user can express him- or herself freely. To provide an application example, the topic of sentiment
analysis is currently gaining momentum. It deals with (the strength of) positive, negative, or neutral
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sentiments as conveyed by the polarity of words, sentences, or documents chosen by social media users
(Liu and Zhang 2012). Newer approaches (Resch et al. 2016) automatically extract from Twitter tweets
and posts from other social network sites affective content that corresponds to the fundamental model of
basic emotions (anger, disgust, fear, happiness, sadness, and surprise; Ekman and Friesen (1971)) or the
refined model of four basic emotions (happiness, sadness, fear, and anger; Jack et al. (2014)).

Leveraging user-generated social media data has one major advantage over traditional surveys: the
possibility of near real-time analysis. Analysing user-generated data allows large-scale environmental,
social, and geographic developments to be investigated “in the now”, rather than after they occur. This
kind of continuous cross-sectional monitoring—with unknown changes in the population that produces the
data—is far from the quality of surveying a panel repeatedly in waves. However, it partly mitigates some
shortcomings of traditional surveys, such as their low temporal resolution. Recent examples demonstrate
the suitability of social media data in applications such as earthquake detection (Sakaki et al. 2010; Sakaki
et al. 2013; Crooks et al. 2013) or the analysis of political sentiment (Wang et al. 2012a; Caldarelli et al.
2014; Vasiliu et al. 2016).

II.4.3 Challenges and Recommendations

Although the applications of geodata and GIS tools discussed thus far open up promising new research
avenues, there are a number of challenges and pitfalls that survey researchers interested in applying these
applications in their own research must bear in mind. Some are well known among GIScientists, but less
so among survey researchers (and vice versa). In this section, we discuss these challenges and pitfalls and,
where possible, suggest some remedies.

II.4.3.1 Spatial Scale

Spatial scale is a central issue for GIScientists, and thus for spatial data acquisition and analysis. Scale
may refer to different components of a geographic analysis, such as the level of geographic detail at
which observations are made (“sampling scale”), the spatial range at which processes of interest operate
(“phenomenon scale”), or the degree of abstraction of a spatial analysis (“analysis scale”) (Dungan
et al. 2002; Ruddell and Wentz 2009). In a more technical sense, scale comprises grain (the smallest
distinguishable parts possible) and extent (size of the study area) (Turner et al. 1989). This technical use
has a geometric interpretation of scale. It prevails in physical geography, but is often inappropriate when
investigating social processes through surveys. Socially meaningful spatial scales, such as neighbourhood,
city, region, and nation, are often better suited for surveys (McMaster and Sheppard 2004).

Spatial scale is not only an objective frame of reference for spatial phenomena but also a property of
people’s subjective perceptions of space that has a strong bearing on their answers to questions about local
geographic phenomena. People perceive their spatial surroundings in unique ways and imbue them with
individual meaning (see Dangschat (2007)). Respondents also use idiosyncratic spatial scales that are
limited by their spatial perception capabilities (Wender et al. 2002). For example, when asked about their
“local community”, voters in the British Election Study thought of completely different areas, ranging from
streets and suburbs, through regions, to whole countries (Fieldhouse et al. 2014). Different mental systems
are involved in perceiving phenomena at different spatial scales (Montello and Golledge 1998; Tversky
et al. 1999; Hegarty et al. 2006), and a number of intrinsic and extrinsic factors influence the idiosyncratic
spatial scale that people use (Witt et al. 2010), with well-established differences in spatial perception along
the lines of gender (after puberty, males tend to perform better at spatial cognition; Weiss et al. (2003)),
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age (younger people tend to underestimate distances) (Sugovic and Witt 2013), emotions (impacting on
perception) (Zadra and Clore 2011), and properties of the physical environment (visual/acoustic cues)
(Iosa et al. 2012).

To illustrate, imagine an interviewer asking about an areal region such as an urban green space, a
residential neighbourhood, or a local community. Respondents will use their subjective representations of
the region based on their idiosyncratic conception of space. Using their imaginations, they will mentally
construe the region in question. Hence, any information gained when looking at space through the
eyes of survey respondents is potentially susceptible to scale differences, because the location, shape,
and size of any perceived areas will influence respondents’ answers. For example, whether there are
enough early childhood education and care centres in a suburb might crucially depend on the correct or
incorrect inclusion of an institution into the referenced area of interest, necessitating an accuracy check
of respondents’ mental representations. One can also try to exploit respondents’ expertise. For instance,
citizens may include areas in their answers that have not been considered by experts, which may be
beneficial in natural hazard analysis when the goal is to identify areas prone to urban floods (Klonner et al.
2016).

The fact that different respondents use different (and highly idiosyncratic) spatial scales when thinking
about the physical environment—and that even one and the same respondent may resort to different
spatial scales when thinking about his or her surroundings—implies that respondents’ answers in any
survey on the physical and social environments do not refer to a fixed, objective geographic frame of
reference. Spatial heterogeneity manifests itself as nuisance variance in the data, which increases the
total survey error (Groves and Lyberg 2010). More specifically, heterogeneity in respondents’ spatial
scales causes instabilities of estimated means of quantitative data (due to spatial trends or discrete spatial
regimes) and variances (spatial heteroscedasticity) (Ord and Getis 2012). Moreover, mixing highly
different individual representations of arbitrary regional conceptions may not only render inferences based
on such responses unreliable, or even bias-prone, but may even make numerical aggregates of respondents’
answers difficult to interpret. This spatial-scale-related heterogeneity contributes to another form of
(non-spatial) heterogeneity well-known in survey research, namely variability due to differing respondent
and interviewer characteristics, or due to specific interactions between interviewers and respondents
(Gabler and Lahiri 2009; Schaeffer et al. 2010; West et al. 2013).

There are different ways to address such scale-related issues: First, survey design requires careful
construction of questions and questionnaires. All items that refer to a spatial phenomenon (e. g., “your
neighbourhood”) should be as explicit as possible in order to lower the risk of ambiguities. One possible
solution is to assist interviewees by providing a map of the area of interest whenever possible (i. e.,
standardising the geographic presentation). However, this cannot always be smoothly integrated into the
interview process. Moreover, it does not fully rule out the problem of different subjective geographic
representations, and the maps provided to respondents restrict their answers to what is displayed on the
map. As an alternative solution, mental maps and sketch maps can be used to document respondents’
representations of geographic space (Boschmann and Cubbon 2014). Mental maps are free-form drawings,
and sketch maps are accurate maps augmented by the respondents, allowing the researcher to get a clearer
picture of the respondent’s inherent scale use (Coulton et al. 2010). Using mental maps minimises the risk
of accidentally mixing different scales during analysis and interpretation.
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Location Shape Scale

Figure II.4.1: Three researcher-dependent aspects illustrating the influence of MAUP on data analysis:
different locations resulting from shifted polygon positions, different distributions as a
function of distinct polygon forms, and different scale resolutions due to diverse polygon
sizes (resulting in different aggregation effects).

II.4.3.2 The Modifiable Areal Unit Problem

The modifiable areal unit problem (MAUP) (Openshaw 1984) is a well-known issue that occurs when
researchers aggregate data to reflect areal units. MAUP describes the fact that the choice of an—often
arbitrary—spatial unit for an analysis can influence the outcomes of that analysis. Figure II.4.1 illustrates
how the three key characteristics of spatial units—position, shape, and scale—affect the analysis of
underlying data points (e. g., from georeferenced surveys). For example, obesity rates can be meaningfully
analysed at the country level or at the state level. Depending on the level, we might see a different
statistical pattern, either A or B, and draw the respective conclusions. Yet, even though the shape of
geographic units (e. g., state borders) can certainly carry meaning for political and administrative bodies, it
is still arbitrary and does not necessarily best reflect the aggregated data and the associated data-generating
processes (from a causal or associative point of view). Given that the geographic units are arbitrary, so,
too, is their position (encompassing specific locations) and the resulting distribution of data points to be
aggregated. Even if the lattice of administrative units were transformed only marginally, the substantive
conclusions that a researcher arrives at might change drastically.

MAUP is one of the long-standing and still unresolved issues in GIScience, and its ramifications are
vividly discussed throughout different academic fields. Recent examples include investigations of human
mobility (Mitra and Buliung 2012; Xu et al. 2014b), criminology (Vogel 2016; Gerell 2017), and forestry
(Mas et al. 2015; Kozak and Szwagrzyk 2016). For instance, Mitra and Buliung (2012) related properties
of the built environment to children’s mode of active/passive school transportation (i. e., whether they walk
or cycle to school rather than taking the bus). Testing six different spatial configurations, they found that
the sign as well as the size of the regression coefficients varied across scales and polygon forms used for
defining the built-environment variables. Similarly, Vogel (2016) investigated the relationships between
environmental factors and violence. Respondents were aggregated to reflect census tracts as well as units
at the city block level. While the analyses revealed significant associations of the environmental factors,
the effect of the geographic neighbourhood did not exist at the block level, but only at the level of census
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tracts. As these examples show, the effect of MAUP on survey outcomes can be severe. MAUP should be
taken into account by testing the replicability across different spatial units.

For survey researchers, MAUP matters (a) for the answers given by respondents on the basis of
subjective representations of geography (mental representations of spatial phenomena), and (b) for the
objective scale of georeferenced external data. MAUP is thus an important issue when it comes to
augmenting classic survey data with external data such as census variables. External data are often in
aggregated form, not free from geometric arbitrariness. The choice of the geographic level of analysis
in many studies to date appears to have been driven largely by data availability rather than by a priori
theoretical considerations of what constitutes meaningful context information. For instance, when
analysing the impact of covariates on respondents’ answers, as in the previous example taken from Vogel
(2016), it is clear that some information is available only through the census. In such cases, MAUP is
essentially inevitable, but it should be kept in mind when drawing any inferences.

Social science studies often use countries, or somewhat more fine-grained administrative units
available in the data distribution, as their level of analysis, without further detailing whether this choice is
conceptually meaningful. This is, to some extent, understandable, given that contextual data provided by
public institutions (e. g., unemployment rates) are often limited to these levels. However, many of these
studies still address fairly distal macro-contexts rather than respondents’ more proximal ecosystems (e. g.,
a city, or a district within a city) in which the (supposedly crucial) person–environment transactions that are
constitutive of individual development take place (Bronfenbrenner 1979; Lerner 1991). While the national
level may be appropriate for many research questions, it would be desirable to devote greater attention to
the choice and justification of the geographic level of analysis. Ideally, researchers would consider using
the geographic level that appears most appropriate from a theoretical point of view, rather than the level
for which data happen to be available. Moreover, they should report whether their substantive findings are
robust across different geographic levels of analysis (Saib et al. 2014).

II.4.3.3 Maps, Distortion, Meaning, and Visualisation

Another perennial issue in GIScience is the cartographic representation of the results generated through
geospatial analysis. Unlike typical charts, maps can be used to bias communication in ways that survey
researchers might be less familiar with. As (Monmonier 1996) states, cartography has the power to
bias the presentation of spatial information by generating “selective truth”. Cartographic styles may
strongly influence which information is ultimately perceived by the respondent. Ways of biasing maps
include, inter alia, the choice of spatial aggregation and scale levels (related to MAUP), but also the
selection of suggestive colour ramps, the creation of categories and classes according to different criteria
(natural statistical breaks, quantiles or units of standard deviations, etc.), the presentation of relative or
absolute numbers, the influence of different coordinate reference systems (geographic vs. projected), or
the choice of icons that represent geographic features. Figure II.4.2 illustrates these effects by showing
the same piece of information (crude U.S. birth rate in 2000) in different ways as originally described by
(Monmonier 2005). Thus, the information obtained from maps may be subject to arbitrariness, regardless
of whether they are used for survey sampling, as visualisation aids in a survey, or to draw inferences from
an analysis. The complex questions involved have given rise to the scientific endeavour known as “critical
cartography” (Crampton 2010; Crampton and Krygier 2005).
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Figure II.4.2: A classic example of “how to lie with maps”: Arbitrary choices influence which information
is being communicated with, and obtained from, maps (Fig. 2, 3, 5, and 6 from Monmonier
(1996) and Monmonier (2005)).
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II.4.3.4 Analysing Context and Using Georeferenced Contextual Data

Several problems exist that relate to the concept of “context”. According to Dey (2001), context is defined
as implicit or explicit information that is useful to characterise a situation. External, physical contexts
are strongly associated with the objective physical environment, typically measured by physical sensors
(e. g., room temperature). However, as noted in sections II.4.2.4 and II.4.2.5 above, contexts can also
be described through respondents’ subjective impressions at an individual level (Hong et al. 2009) or
by aggregating respondent data from wearables and tracking devices (Bettini et al. 2010; Sagl et al.
2015). The spectrum of available technologies for capturing contextual information allows situational
features to be quantified comprehensively and in unprecedented detail. These features include geographic
aspects such as current environmental conditions (weather, air quality, etc.), the human perception of
urban spaces, and the individual and collective behavioural responses to a range of functional settings
including traffic infrastructures, open spaces, neighbourhoods, or residential areas. All these settings
are of considerable importance for human-environment interactions and citizens’ quality of life, yet the
number of characteristics with which to describe (and analyse) the impact of these contexts is manifold.

One limitation of most socioecological research to date is that—again due to data availability—it
adopts a rather static view of contexts. The contextual information in these studies is often confined
to cross-sectional snapshots, with the result that the dynamic nature of contexts goes unnoticed. We
would like to challenge survey researchers to aim for a more dynamic conceptualisation of contexts.
Environments change (as do people). Once chosen for analysis, geographic variables may not represent
the same context a few days, months, or years later. For instance, contextual factors, such as weather
conditions, traffic density, air pollution, vegetation, etc., are characterized by high spatial and temporal
variability. Especially if longitudinal data on individual survey respondents are available, there may be
ample opportunity to also treat contextual information as time-varying. Linking changes in ecological
variables to variation in individual-level outcomes may stimulate new research questions and also aid in
identifying the direction of causal influence.

Another challenge arises when individual survey data are aggregated to a geographic level in order to
map them into a spatial context and infer something about the target population or the context. When
participating in a survey, individuals may provide answers about their current environment as indicated
by a GPS location, and they may appear to be knowledgeable about the reference object. However, their
true degree of expertise may be concealed due to the complexities of the question-answering process. For
instance, participants might be living in different environments during the week than at the weekend (e. g.,
commuters). Simply assuming that data reflect information about some location just because a location
happens to be available can introduce error of unknown magnitude, especially if respondents’ answers are
mapped to geographic units to which their answers do not actually belong (e. g., due to imprecise question
wording, or participating in a survey on a mobile device at an unintended location that differs from what
is reported as the place of residence, etc.).

Finally, any mapping of survey data to geographic units is done on the assumption that geographic
units can be validly characterised by individual survey responses. Only then can statistical aggregates
across respondents legitimately describe the specified geographic unit—for instance, by means, variances,
and other indices of heterogeneity such as fractionalisation and polarisation (Chakravarty 2015). For this
assumption to be valid, two minimum requirements must be met: (a) For reliable estimates, the number of
data points from individual response units (cases) per geographic unit must be large enough in relation
to the unit population that the aggregate measure intends to describe; if not, a higher aggregation level
(and spatial scale on which conclusions can be drawn) may be required. (b) The survey sample must be
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sufficiently representative of the target population characteristics in each geographic unit, lest bias arise in
characterising the unit by aggregate measures. Great care must be exerted in testing the extent to which
the data can be considered representative of the target population and the contextual variables inferred
from them (Doff 2010), especially if participant self-selection and participants’ selective mobility are not
controlled for (Rentfrow et al. 2015; Jokela et al. 2015).

II.4.3.5 Fallacies and Statistical Issues

With the increasing availability of big data and geocoded databases, there is also an increased risk of
inferring ecological relationships (based on aggregate data) that may lead to misleading causal inferences if
these are extended to the level of individual agents. For instance, some geographic areas may be inhabited
by groups of different sizes (majority/minorities), and the same areas may have different likelihoods of
showing other characteristics (i. e., skewed base rates reflecting a different prevalence of specific attributes
in these areas). But that does not mean that the statistical relationship between aggregate properties
supplies the right clue to the underlying causal pathways. For example, it is possible to obtain area data
on crime and correlate them with other area-level information (e. g., ethnic composition). The temptation
is to naïvely use the aligned skewed base rates of attributes to infer a relationship between them where
none actually exists—a so-called pseudo-contingency (Kutzner and Fiedler 2017).

Higher crime rates may be observable in areas with a higher prevalence of a minority group. And yet
the relationship at the aggregate level cannot hold the minority accountable for the crime rates observed
in the areas in question. Based on the observed aggregate-level information, pseudo-contingencies
provide a legitimate proxy for inferences at the ecological level. However, they are, at best, a heuristic
for individual-level inferences. They may reflect genuine contingencies under various conditions, yet
pseudo-contingencies are also at risk of inviting the wrong inference level. As the access to databases
with high geographic resolution increases, survey researchers and GIScientists have a responsibility to
ensure the correct interpretation of their data. We may face an increasing ethical obligation to correct
blatant misuse of data (e. g., for political or ideological purposes).

We caution readers that, irrespective of the specific aggregation level chosen, there is always the
risk of an aggregation bias, which refers to the difference between results established at the level of
the units of analysis (say, states or groups) and results established for lower levels of analysis (say,
counties or individuals) when using aggregated data. Making inferences from higher to lower levels runs
the risk of committing an ecological fallacy (Piantadosi et al. 1988), whereby an observed association
between variables is erroneously taken to operate at a lower aggregation level than the one actually studied
(Robinson 1950; Robinson 2009; Robinson 2011). Conversely, an individualistic fallacy may result when
relationships observed at a micro-level are erroneously extrapolated to a macro-level (Clark and Avery
1976). For example, the outcome of encounters between social groups cannot be predicted on the basis of
how individual group members from different groups interact with each other (Doerr et al. 2011; Lichter
et al. 2012). Drawing conclusions about individuals (the survey units) through aggregated quantities
(to match the geographic units)—and vice versa—requires drawing inferences carefully and properly
(Grotenhuis et al. 2011), which usually necessitates multi-level data analysis (Nezlek 2008).

Furthermore, when using georeferenced data, many statistical methods are no longer suitable. Spatial
autocorrelation—that is, the degree to which one object is similar to other spatially nearby objects (Good-
child 2009)—jeopardises the independence requirement of many statistical techniques. The phenomenon
refers to the common finding that observations with a higher proximity in geographic space tend to be
more similar to each other than those at a greater distance; this often results in patterns such as gradients
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or clusters. Such patterns may also be found among survey data. Using spatially distributed data that
are either externally linked to, or gathered from, surveys requires methods of data analysis that detect,
describe (i. e., quantify), and, if necessary, adjust for the presence of spatial autocorrelation (Assuncao
and Reis 1999; Banerjee et al. 2014; Getis 2010; Oden 1995; Waldhör 1996). We refer interested readers
to an online introduction1 and to recent accessible treatises of applied spatial analysis (Fischer and Getis
2010a; Ward and Gleditsch 2008).

II.4.3.6 Analysing User-Generated and Spatiotemporally Distributed Data

Another set of challenges arises when integrating new methods of data collection such as citizen sensing
(i. e., acquiring people’s feedback through dedicated technologies such as smartphone apps) or linking
collective data sources (e. g., mobile phone or social networks) with traditional survey approaches.
Traditional ways of analysing geospatial data mostly presume a well-defined data acquisition process
and follow the first law of geography (Tobler 1970), according to which processes happening close to
each other have a stronger influence than distant ones. However, Tobler’s law may not hold for most
user-generated data. For example, social media posts about a large-scale sports event or a national
election may be related in time (when they are posted) and semantics (the content of the posts), but not in
geographic space (as they may be sent from users in different places throughout the world). The reason
is that the data-generating process for social media posts (as opposed to “traditional” spatial data like
demographic data or transportation infrastructure data) is not standardised, nor is it under the control
of a researcher. Instead, the mechanisms generating user-driven data are unpredictable and technically
arbitrary; user motivations are often hidden, but they are likely to be context-bound. This non-standardised,
uncontrolled data-generating process also implies that representativeness for the whole population may be
impossible to achieve with data from wearables, citizen sensing, or social media (although targeting more
specific populations may be realistic; Pötzschke and Braun (2016)). This issue has been largely neglected
in previous research, and it constitutes a potentially high-impact research gap, even though first attempts
at overcoming it within spatial analyses are being made (for the case of social media data, see Westerholt
et al. (2015) and Westerholt et al. (2016)).

Another still largely unresolved question is how participants’ responses are influenced by repeatedly
interacting with technical devices (smartphones), especially if they frequently encounter dedicated survey
questions. From a psychological viewpoint, besides typical memory errors, this may induce several
kinds of biases. First, conditioning effects may occur such that people become conditioned to specific
locations and provide pre-determined answers that they have learned to automatically associate with
the location when prompted for responses. Given the frequency of recurring situations, they may not
be motivated to engage with the question as expected. Due to the cooperative principle that governs
effective communication (Grice 1975), some respondents may alter their statements when answering
questions repeatedly—although their opinions have not really changed—because they think that new
information must be provided; other respondents may stick with what they answered earlier in order to
appear consistent and not contradict themselves. Second, it may not always be possible to gain reports
immediately at the location of interest. However, delayed responding may introduce retrospective bias
(e. g., inaccurate recall, recency effects, false memories) into respondents’ cognitive representations (see,
e. g., Steffens and Mecklenbräuker (2007)). Survey researchers can offer specific advice on how to
minimise the impact of such biases on survey quality.

1https://docs.aurin.org.au/portal-help/analysing-your-data/spatial-statistics-tools/introduction-to-spatial-autocorrelation

https://docs.aurin.org.au/portal-help/analysing-your-data/spatial-statistics-tools/introduction-to-spatial-autocorrelation
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Still, as the availability of data from wearables, social media, and other new data sources increases,
greater research efforts will be necessary to resolve questions of survey designs, data quality, represent-
ativeness, and potential biases, and to link these new data to traditional surveys. Here, GIScientists can
benefit from the expertise of psychologists and other social scientists with regard to traditional surveys,
and we call on these disciplines to jointly tackle the aforementioned issues. Compared to traditional
surveys, surveys in the domain of GIScience often encompass user-generated data, or they comprise a
strong technological component (e. g., GPS receivers, physical assessments, advanced spatial analysis
techniques). A possibly hidden assumption among some researchers may be that surveys must invari-
ably entail the gathering of subjective data. Yet, with GIS tools, surveys may be based not on a single
questionnaire at all, but rather only on objective data capture. Hence, the boundaries of surveys become
fuzzy.

Whatever survey concept applies, full documentation of the survey design and its quality is required
because only this permits estimating, and potentially correcting for sources of, sampling related error
(Dever et al. 2008; Gabler and Quatember 2013). This includes intended and actual populations under
study (to determine over- and under-coverage) as well as the sampling design, the obtained sample size,
and any missing data (e. g., non-response, drop-out; Little and Rubin (2002)). With new forms of data,
such as data from social media, this information may be unavailable, so that the quality of the data
collection cannot be assessed (Brickman Bhutta 2012). However—depending on the study goal—this
information may be an indispensable requirement (Rothman et al. 2013; Pötzschke and Braun 2016).
Moreover, most current approaches in geospatial analysis rely on well-defined data structures with known
degrees of uncertainty and small error margins, although these requirements are not met by vast portions of
user-generated data (Steiger et al. 2015b). Guidelines may help researchers to minimise total survey error
(Groves and Lyberg 2010) and improve total survey quality under budgetary constraints (Biemer 2010),
for instance, those published by the German Data Forum (RatSWD 2015), AAPOR2, and ESOMAR3.

II.4.3.7 Privacy Concerns and Data Protection Issues

The last challenge we highlight is the use of any personal—including geocoded—data and researchers’
ethical obligation to protect users’ privacy (Goebel et al. 2010a; Goebel et al. 2010b). Typical privacy risks
are presence leakage (an attacker might identify individuals present in, or absent from, the database) and
association leakage (an attacker might unambiguously associate individuals with sensitive information).
The risk of deductive disclosure—identifying a person by a combination of personal characteristics—is a
challenge for GIS research (due to the inclusion of geocodes, tracking of individuals, and data linkage).
This issue calls for technologies and legal frameworks to protect data against deductive disclosure of
participants’ identities, unintended transfer, or other misuse by third parties (Barcena et al. 2014).

Legislation that ensures a degree of data safety (keeping data available in the future) and data security
(limiting access to data) varies from country to country. Consequently, researchers sharing sensitive data
in international collaborations may have to deal with diverging legal requirements and policies for raw
and derived data across various countries. Moreover, respondents’ willingness to voluntarily share highly
personal data with scientists differs across individuals and settings. However, support for research is
usually closely linked to trust in the security of data and their protection against misuse. Ironically, many
users willingly share private information in other places and do not actively try to conceal or protect it,

2http://www.aapor.org/Standards-Ethics/Best-Practices.aspx
3http://www.esomar.org/knowledge-and-standards/codes-and-guidelines/guideline-on-opinion-polls-and-published-

surveys.php

http://www.aapor.org/Standards-Ethics/Best-Practices.aspx
http://www.esomar.org/knowledge-and-standards/codes-and-guidelines/guideline-on-opinion-polls-and-published-surveys.php
http://www.esomar.org/knowledge-and-standards/codes-and-guidelines/guideline-on-opinion-polls-and-published-surveys.php
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even if they claim that they are concerned about their privacy (Acquisti et al. 2013). A striking example is
the vast amount of sensitive data (including rich location data) that people share on social media platforms
such as Facebook, where they typically have little influence on data collection and processing policies.
Likewise, estimates show that one-third of the free smartphone apps collect location information, yielding
numerous possibilities of analysing geographic data and extracting information from them (Kersten and
Klett 2012). Apparently, operators and service providers—whose business models often rest on collecting
and selling customer/user data (e. g., Google)—effectively insinuate that less privacy is the new social
norm, and that it means better services for the user (Johnson 2010).

On the researcher’s side, several means exist to protect participants and their rights, including privacy
(Resch et al. 2015a). First, all participants should participate voluntarily in data-rich scientific studies
through an opt-in agreement, after a thorough briefing (informed consent)—something that is rather
self-evident from the perspective of survey research. Principal investigators and researchers must enter
into a data-sharing agreement about which data will be collected, analysed and stored, where and for how
long, and who will have access to them.

When data are to be stored and made available to other researchers, a possible way of allaying concerns
about privacy is to restrict access to sensitive data. For instance, it might be feasible to use different
levels of access privileges to sensitive datasets in a data archive (“data enclave”; Lane (2014)). However,
such archives usually involve increased levels of burden. Sometimes, only aggregate query results can
be obtained, or access might be limited to eligible researchers in a controlled, secure environment with
high-security data storage facilities (e. g., GESIS’ Secure Data Center4 with an on-site safe room). Sharing
multi-site research data safely (via the cloud) during collection requires technical solutions that are still in
their infancy, and new standards have be developed and enforced (Palanisamy and Liu 2015; Veena and
Devidas 2014).

For applications that require the collection and storage of personal information, the Electronic Frontier
Foundation and others recommend anonymising data and using strong cryptographic protocols at various
stages of data transmission and handling. However, trajectories of people moving through space (at
specified times) can still undermine anonymity. In the case of spatial information, more specifically,
previously anonymous users can be re-identified relatively easily by their spatial profiles because personal
geodata are highly unique to an individual. Indeed, Montjoye et al. (2013) showed that only four random
positions of a track may be needed to identify individuals. In this context, the concept of location privacy
describes the ability of an individual to move in public space without their geographic location being
collected or stored. The most restrictive way to achieve location privacy and to prevent misuse of personal
data is to opt out of research altogether and to prohibit the collection of any data (Blumberg and Eckersley
2009)—which is not usually a scientifically viable option. If possible, trajectory data should be analysed
and shared at an aggregated rather than an individual level. Furthermore, privacy should also be protected
by splitting trajectories into sub-paths so that they cannot be reconstructed. Although this involves a
certain amount of information loss, the restoration of identities is prevented (Sarowar Sattar et al. 2013;
Wang 2010).

It is often necessary to georeference the survey data so that they can be mapped to relevant spatial
units in order, for example, to link individual respondents’ data to contextual data. Several methods
of georeferencing exist. Direct georeferencing requires that exact locations be collected via spatial
coordinates (e. g., 2D or 3D, GPS). Indirect georeferencing assumes that relevant spatial units are inferred
from postal codes, administrative units, etc. However, the use of online geocoding services for converting

4http://www.gesis.org/en/services/data-analysis/data-archive-service/secure-data-center-sdc

http://www.gesis.org/en/services/data-analysis/data-archive-service/secure-data-center-sdc
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terms such as ZIP codes to locations such as latitude, longitude, and elevation by means of direct
georeferencing (e. g., via Google services) should not, in our view, be the first choice. Geocoding involves
the risk that non-aggregated scientific use files might become de-anonymised, as geocodes potentially
undermine a user’s location privacy. Even though single locations are not revealing in themselves,
complete time-stamped location patterns may be used to identify an individual (especially if a company
knows more about that individual than the information contained in the scientific data). Moreover, reverse
geocoding—back coding of latitude and longitude to a comprehensible address—involves the risk that an
individual’s identity will be leaked—even from mere dots representing individuals on a published map.
Identity leakage from maps can be prevented by aggregating data points prior to drawing the map or by
skewing the presentation of individual data points (Brownstein et al. 2006).

Instead of using geocoding services from companies with commercial interests, we suggest using
public geocoding services such as that provided by the German Federal Agency of Cartography and
Geodesy (BKG). This service allows users to tag any geographically identifiable object (e. g., on the basis
of available address information) with precise geographic coordinates (reverse geocoding is possible,
too). It is usually available only to federal authorities. However, under an agreement between GESIS
and the BKG, it may also be used by other institutions (Schweers et al. 2016) (see GESIS Georefum5).
Some specialized centres provide software, services, and support for linking databases while observing
privacy-preserving record linkage (e. g., German Data Linkage Center6; Schnell (2013a)).

Note that bias can be introduced later on when linking the datasets (Sakshaug et al. 2012). Respondents
who are used to being interviewed about sensitive issues (e. g., political attitudes) may not be willing
to consent to their data being linked to additional databases, and those who are willing may not be
representative of the population. GIScience participants may agree to be tracked (e. g., resulting in
trajectories), yet this may be due to previous self-selection (which would be accompanied by overall lower
response rates). Initial self-selection and subsequent selective dropout may introduce bias into a combined
dataset.

We conclude this discussion by encouraging researchers to reflect on the ethical implications and
the long-term societal impact of fine-grained spatial analyses. For example, terms such as “air quality”
or “pollutant dispersion” are only surrogates for more direct and far-reaching influences on individuals,
such as life expectancy, respiratory diseases, or quality of life (Resch et al. 2012). Knowledge about
these phenomena at high geospatial resolutions may affect relevant aspects in people’s lives, such as
health insurance rates or real estate prices. Researchers’ ethical responsibility to find the appropriate
spatial granularity level when providing information and communicating research findings has never been
more acute. The scientific drive to provide ever more accurate, possibly finer-grained, and complete
information competes with other ethical principles surrounding privacy concerns and prevention of
misleading conclusions.

II.4.4 Conclusion

In this article, we have discussed the promising new opportunities of integrating GIScience tools into
survey research in general, and psychological survey research in particular, and the challenges associated
with these opportunities. In so doing, we have focussed mainly on how survey research can profit from
incorporating recent advances in GIScience. We highlight, however, that GIScientists can also profit

5http://www.gesis.org/forschung/drittmittelprojekte/projektuebersicht-drittmittel/georefum
6http://www.record-linkage.de

http://www.gesis.org/forschung/drittmittelprojekte/projektuebersicht-drittmittel/georefum
http://www.record-linkage.de
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greatly from the accumulated wisdom in survey research methodology, for example, when thinking
about measurement and assessment, data quality, or representativeness. We are certain that intensified
interdisciplinary dialogue holds great potential for future research. In our view, both survey researchers
and GIScientists would benefit from incorporating each others’ traditions into their own theorising and
methodologies. In this process, survey researchers can act as consultants to GIScientists just as much as
GIScientists can inspire survey researchers with new advancements.

A stronger integration of the research traditions will also enable highly inspirational interdisciplinary
research. Future research at the intersection between survey research methodology and GIScience may
even blur the very boundaries of the survey concept and bring us closer to studying the person–context
transactions that are deemed crucial in shaping individual behaviour and development (Bronfenbrenner
1979; Lerner 1991). Thanks to the progress that has been made in GIScience, the study of the current
environment that Lewin (1936) once envisioned can now include precise temporal and spatial aspects.
Context information can increasingly be incorporated in real time, and it may be based on subjective as
well as objective contextual characteristics of individual situations.

Obviously, the fruitfulness of future research enterprises depends on the engagement of researchers
from both sides, their growing awareness of the tools, methods, and concepts they offer each other, and of
the goals and challenges associated with each of them. We hope that this overview will be instrumental in
fostering dialogue between survey research and GIScience.
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II.4.5.1 Glossary of Terms

Table II.4.1: Glossary of Terms

Label Explanation Reference

Geography

The discipline dealing with the interactions between humans
(or natural systems) and space. The endeavor is limited to the
humanly comprehensible scale.

Clifford et al.
(2009)

Geographic
Information
Science (GIS-
cience)

The discipline that investigates theoretical issues regarding
the nature, acquisition, storage, analysis, and presentation of
geospatial information and data, while abstracting these from
specific geographic questions.

Goodchild
(1992) and
Goodchild
(2010)

Geoinformatics

Largely overlaps with GIScience; preferred among
German-speaking scholars; stronger technological focus, as it
accentuates the development and application of methods and
technology.

Lange (2013)

Geographic In-
formation Sys-
tem (GIS)

A GIS is a system of hardware, software, and procedures to
support the capture, management, manipulation, analysis,
modelling, and display of spatially-referenced data for
solving complex planning and management problems.

Goodchild
and Kemp
(1992)





II.5 Research on Social Media Feeds—A GIScience Perspective

II.5.1 Introduction

During the last two decades, the role of internet users changed dramatically. While they were mostly
passive content consumers before, they are now considered proactive data producers. This phenomenon
is summarized by the term “Prosumer” (Ritzer and Jurgenson 2010) and gets facilitated through major
technological advancements such as ubiquitous access to the mobile Internet and a widespread use of
smartphones equipped with positioning and sensing capabilities. These outlined developments do not
just happen recently, but trace back to the much older development around the so called “Web 2.0” (ITU
2014). In geospatial terms, these developments are well reflected by Mike Goodchild’s popular definition
of “Citizens as Sensors” (Goodchild 2007), where ordinary people capture and disseminate “Volunteered
Geographic Information (VGI)”. Haklay further puts this development into broader context and rather
coined the term “GeoWeb” (Haklay et al. 2008). OpenStreetMap (OSM) is probably the most prominent
example of VGI.

Projects like OSM provide a well-defined data capturing protocol as well as a clear mission regarding
their contributed contents. In contrast, data originating from online social networks (another source of
VGI) is way more heterogeneous and diverse. At the same time, however, it may also provide high levels
of semantic detail and is generated by a larger number of users. Consequently, it gained the interest of
various research disciplines. These range from sociology toward linguistics, and of course geography and
GIScience. The latter one is facilitated by the fact that a great deal of information contributed to social
media is geotagged. Thus, the remainder of this chapter focuses on the spatial aspects of social media,
and potential applications that can be derived from this kind of data.

Section II.5.2 highlights the general potential of social media analysis for investigating social phe-
nomena. We do that by outlining selected case studies from the exemplary field of human mobility
analysis. These have demonstrated the usefulness of social media for investigating mobility patterns as
well as human spatial behaviour. Section II.5.3 then provides an overview of several different application
domains of social media analyses, with a particular focus on Twitter. Finally, Section II.5.4 discusses
some technical issues of established spatial analysis methods when these are applied to social media
data. We conclude the chapter by summarizing its different parts. We further provide recommendations
regarding future GIScience research on social media data.

II.5.2 Utilisation of Social Media Data for Investigating Urban Environ-
ments

The spatial and social structures of a city as well as the dynamic nature of human activities result in certain
collective and individual human behaviour patterns. Social media data can help to “sense” this type of
information from urban environments in an in-situ manner. GIScience research thereby is focused on
the overall question how corresponding spatiotemporal patterns from ubiquitous sensor networks and
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heterogeneous data streams can be explored, extracted, validated and aggregated. In turn, such information
might enable us to sense everyday spatial processes and to gain knowledge about urban environments,
especially with respect to collective human dynamics. The study of these issues has become one of the
primary objectives of GIScience (Giannotti and Pedreschi 2008).

The information originating from social media messages (e. g., tweets in case of Twitter) may contain
spatial, temporal and semantic attributes. Considering these dimensions, social media can be considered
as a (partial) proxy of real-world happenings. However, space, time as well as semantics are influenced
by each user’s individual perception of the surrounding space. It is thus important to figure out ways to
circumvent these issues for gaining trustworthy and objective information from these data sources.

The following short paragraphs outline case studies in which a range of GIScience researchers has
drawn human mobility and urban study related knowledge from Twitter. We group these studies in
accordance to their underlying research goals. The listed paragraphs thus provide the reader a quick
overview of both the types of studies that have been conducted as well as methods and outcomes.

II.5.2.1 Mobility and Social Behaviour

Studying the social dynamics of a city remains a challenging endeavour, which has recently been carried
out in a qualitative manner. Thus, social media might be a promising source of information in order to
provide a better understanding of social dynamics within urban environments and resulted in various
research efforts. Regarding the analysis of collective human mobility and activity patterns from social
media, Cho et al. (2011) investigate social ties and their influence on human mobility patterns by
comparing social media check-in data and cellphone location data. They found a stronger association
of social network ties influencing long-distance travel than short range spatially and temporally periodic
movements. Within the observed Twitter user pattern, Lee and Sumiya (2010) study user behaviour by
measuring geographic regularities and detecting geo-social events through identifying Regions of Interest
(RoI). Another approach conducted by Noulas et al. (2011), Cranshaw et al. (2012) and Kafsi et al. (2015)
is the identification of characteristic neighbourhoods, collective movement patterns and social ties within
certain user communities from Foursquare and other social media data. In a similar approach for Twitter,
Li et al. (2014) measure the spatial dispersion of users in a community and their trajectories. Hawelka et al.
(2014) aim to further empirically validated the observed human behaviour patterns and found a correlation
between the conducted Twitter census and economic key figures. Furthermore, Li et al. (2013) explore
spatiotemporal pattern of Twitter and Flickr data and investigated a relationship between socioeconomic
characteristics of people who are generating social media posts in the US.

II.5.2.2 Mobility and Underlying Urban Structures

The exploration of the relationships and the impact of urban structures on human mobility is an interesting
study area for social media researcher. Wakamiya et al. (2011) investigate temporal patterns of crowd
behaviour over Japan by spatial partitioning tweets in order to extract urban characteristics. On a smaller
scale several studies investigate the connection with extracted urban activities from social media and
their connection with the underlying urban structure. Kling and Pozdnoukhov (2012) were able to detect
spatiotemporal clusters of frequently occurring urban topics in New York. Furthermore, Ferrari et al.
(2011) also work with georeferenced tweets and a semantic probabilistic topic modelling approach to
automatically extract urban patterns from location-based social networks. The study concluded that
extracted urban motion patterns and identified hotspots in the city allow the inference of crowd behaviours
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that recur over time and space. A similar approach by using Foursquare data by Cheng et al. (2011) and
Hasan et al. (2013) also resulted in the characterisation of urban human mobility and activity patterns.
Andrienko et al. (2013) correlated the spatiotemporal clusters of keyword based filtered georeferenced
tweets of places where people tweet with US population densities. The results have shown strong
correlations between the observed Twitter distribution and census data, suggesting that social media is
a reliable proxy for the inference of mobility patterns. One further application is to derive intra-urban
events showing distinct mobility patterns over time. This spatiotemporal movement has proven to reflect
typical mobility behaviour in the underlying urban structures (Steiger et al. 2015b).

II.5.2.3 Mobility and Human Activities

Several studies infer individual and collective human daily activity patterns by analysing crowdsourced
information, such as taxi trip records (Liang et al. 2012), GPS traces (Azevedo et al. 2009; Jiang et al.
2009) or mobile phone records (Candia et al. 2008; Gao 2015). Consequently, a large literature body
also focus on studying human mobility and activity pattern from social media data. (Krumm et al. 2013)
estimate individual home locations of heavy Twitter users and apply machine learning algorithms to
classify and predict individual travel behaviour. Jin et al. (2016) developed a method to infer users’
mobility patterns from check-ins in Foursquare. Coffey and Pozdnoukhov (2013) go one step further
and semantically annotate mobility flow datasets with activity information and trip purposes from tweets.
Similarly, Wu et al. (2015) utilise social media to annotate the location history of mobile phone users
for the characterisation of certain social activities. Focusing on the content of tweets, Grinberg et al.
(2013) proposed a method to detect semantic patterns to infer clusters of users’ real world activity. Gao
(2015) developed a probabilistic approach to make place recommendations based on the users’ geo-social
circles, as extracted from Foursquare. In another study, the authors estimate spatiotemporal mobility flows
from Twitter for the area of greater Los Angeles to infer origin- and destination trips (Gao et al. 2014).
Results have shown similar pattern when comparing with community survey data. In a previous study we
introduced a semantic and spatial analysis method (Steiger et al. 2014b), through which we were able to
extract geographic features from uncertain Twitter data and have shown that observed clusters correspond
to landmarks, such as highly frequented squares and major transportation hubs. A further investigation
revealed similar semantic layers that represent collective human mobility flows in co-occurrence with
underlying social activity (Steiger et al. 2014a) and could thus lead to new insights in characterising urban
mobility.

II.5.2.4 Future Research Recommendations

Further research needs to be conducted to assess the reliability of social media datasets. It also must
be noted that the data collected from wireless devices are influenced by GPS/WIFI inaccuracy issues
(Zandbergen and Barbeau 2011). Moreover, users can individually choose to share their precise location
to a tweet or just a general location information (such as a city or neighbourhood). This resulting location
uncertainty leads to imprecise location information of geotagged tweets (Li et al. 2011).

Within the semantic attribute one must consider that the containing information may relate to events in
the past, present or even future (Sengstock and Gertz 2012). Principally the text corpora as such in social
media posts are relatively sparse and vague. It may also be fairly ambiguous and hence featuring only a
weak indicator of a real world event. This uncertain semantic knowledge is a result of the fact that people
using Twitter have individual motivations to post information and their main intention is to primarily
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serve their own communication needs. One further typical characteristic of social media is that users do
not post equally distributed in geographic space and time leading to a heterogeneous dispersion of posts.
Jatowt et al. (2015) further assess these varying temporal patterns and dynamics within social media.
Furthermore, georeferenced social media posts only represent a small fraction of the overall available
data. Not all user groups use all types of social media platforms similarly, which produces a potentially
strong socio-demographic bias (Longley and Adnan 2016). Last, the application of spatial and semantic
methods themselves creates uncertainties, since the distribution of specific geographic phenomena and
their semantic complexities within tweets are not known beforehand (Westerholt et al. 2015). Hence, it is
important to compare and validate results with other acquired sensor data.

Conducting further research in this area however will be worthwhile, since study results may provide
new additional insights into the complex human-sensor-city relationship at a much more fine-grained
spatial and temporal level than before. New knowledge gained from this research will provide a better
understanding of individual and collective human behavior within urban environments and may assist
stakeholders and decision makers in their planning processes.

II.5.3 Application Domains of Social Media Analyses

Location-based social networks (LBSN) (Roick and Heuser 2013) offer a vast amount of voluntary content.
The investigation of human activities in location-based social networks is one promising example of
exploring spatial structures in order to infer underlying spatiotemporal patterns. Twitter for example is
more and more recognised by numerous research domains. In particular it provides an opportunity for
GIScience to understand geographic processes and spatial relationships comprised in social networks.
Summarising the current state of research concerning the application for spatiotemporal analyses, one
outcome of a previously conducted systematic literature (Steiger et al. 2015a) revealed that Twitter
analyses are mainly focused on the spatiotemporal classification and detection of events. Principal
investigated application domains are:

II.5.3.1 Event Detection

To detect events, researchers are currently looking for spatial, temporal and semantic patterns within
Twitter. In this respect people act as a social sensors for events (Yardi and Boyd 2010; Chae et al. 2012).
Disaster- and emergency management as one event detection subfield has been the primarily identified
application in nearly a third of all reviewed studies (Sakaki et al. 2010; Murthy and Longwell 2013;
Crooks et al. 2013). Further research has been conducted on utilising Twitter in traffic management. This
can be found in 14 % of reviewed studies (Kosala and Adi 2012; Wakamiya et al. 2012; Lenormand
et al. 2014). Another area which seems to be quite popular is research on Twitter data for disease/health
management adding up to another 5 % of the reviewed studies (Lampos and Cristianini 2010; Gomide
et al. 2011; Sofean and Smith 2012). A famous example is the derivation and prediction of information on
infection sources and the spreading of an illness from Twitter messages (Culotta 2010; Collier et al. 2011).
One prominent example is earthquake detection from Twitter data (Longueville et al. 2010; Zook et al.
2010). This has been successfully accomplished in a number of studies correlating results with official
earthquake sensor data (Tapia et al. 2011; Thomson et al. 2012). Sakaki et al. (2010) have developed an
algorithm that uses Twitter to calculate earthquakes’ epicenters and the typhoons’ trajectories. Moreover,
situational information can be derived from location-related short messages to coordinate emergency
responses (Vieweg et al. 2010). Also in the context of disease and health management similar outcomes
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have been derived. Tweets showing disease incidents have shown similar spatiotemporal distributions as
those in with official reports. With these studies research has proven the trustworthiness and a high level
of representativeness of tweets throughout different application domains (Albuquerque et al. 2015).

II.5.3.2 Location Inference

Locations of users within social networks can be inferred or even predicted with the help of direct
or indirect geolocation information derived from the provided metadata or from the semantic content
(Kinsella et al. 2011; Hong et al. 2012; Hiruta et al. 2012). The geographic accuracy could be increased by
extracting the textual information from the tweet or from the metadata itself. For example, Lamprianidis
and Pfoser (2011) have extracted locations and their names from Flickr pictures by clustering user-
generated data points associated with geo-referenced pictures. Kelm et al. (2013) discusses various
methods to extract place names from textual data from articles, posts or tags in geo-social networks,
including place name gazetteer and statistical language modelling. Some methods follow an opposite
approach and infer the location of a feature from implicit location information. Serdyukov et al. (2009)
model the probability that a group of tags be assigned to a location. Similarly, (Gallagher et al. 2009)
used location probability maps generated from tags for the same purpose. Van Laere et al. (2010) have
pursued the same goal using k-medoids and Naïve Bayes clustering methods. Some approaches focus on
inferring a user’s or a group of users’ location. Cheng et al. (2010) have proposed a probabilistic method
to determine users’ location from the content of their Twitter messages. Other authors have proposed to
use the location of users’ friends to achieve the same goal (Backstrom et al. 2010). Stefanidis et al. (2013)
have proposed a framework to harvest ambient geospatial information from social media feeds to locate
social hotspots or to map social networks in a given geographical area. Ajao et al. (2015) summarise the
broad range of available techniques applied to infer direct and indirect location from Twitter messages
and social media users.

II.5.3.3 Geo-Social Network Analysis

Another important domain of research is social analysis which investigates relationships of individual
users within a social network (Wu et al. 2011; Cranshaw et al. 2012). Geo-social network analysis seeks
to identify the structure of social networks and their distribution in geographic space (Scellato et al. 2010;
Lee and Sumiya 2010). Social ties may feature distinct spatial distributions enabling spatiotemporal
analyses. These distributions can help finding collective social activities and ultimately understanding
geographical processes. A subfield of geo-social network analysis are sentiment and emotion analysis
(Wang et al. 2012a; Quercia et al. 2012). This field of research also offers a great potential for GIScience
in the context of extracting contextual emotional information within urban and rural environments. One
promising further field of research within social analysis which should be mentioned is urban planning
and management which also could benefit from the rich data found in location based social networks
such as Twitter. In the context of disaster management, several studies aim to infer the social dimensions
within certain geo-located communities in twitter during disaster events (Conover et al. 2013; Bakillah
et al. 2015).

II.5.3.4 Future Research Recommendations

Social Media data for research has proven to be a valuable source, as it not only comes for free, but
also features a high spatiotemporal resolution. This kind of data especially enables possibilities to find
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spatial patterns and events which can help validating existing information sources. One identified main
research gap is the exploration of human spatial behaviour (Miller and Goodchild 2015) in order to gain
knowledge about the underlying geographic processes and dynamics. Furthermore, the current research
foci allow to transfer established methods from various disciplines (e. g. Computer- and Information
Science, Social Science etc.) into other disciplines and enhancing new applications. As one example,
more use of computer linguistic approaches to leverage knowledge from textual information, combined
with methods for spatiotemporal analysis from computational sciences could lead to new insights within
specific geographic application domains, such as disaster management or human mobility analysis.

II.5.4 Spatial Analysis of Social Media Feeds – Challenges and Ap-
proaches

The primary goal of spatial analysis is to explore structures within spatial data. This typically involves
tasks like finding clusters on a map or figuring out distributional characteristics of data. One theoretical
field underlying spatial analysis is spatial statistics. This field provides the basic principles that are
underlying many spatial analysis problems. Key to this field is identifying spatial correlations, and thus
hints on systematic patterns in geographic data (Fischer and Getis 2010b). Respective methods and
techniques are thus useful tools for gaining geographic insight into social media data.

The spatial analysis of social media data is typically conducted in an exploratory manner. This is due
to lacking knowledge about potential underlying spatial processes, and thus about social media messages
and their dispersal in geographic space in general. Useful tools on that regard are the K-Function (Ripley
1976) (purely geometric) and the mark correlation function (Stoyan and Stoyan 1994) (attribute values),
both originating from spatial point pattern analysis. These methods allow identifying significant geometric
clustering and regularity within stochastic point patterns. When the geometry is fixed (or rather treated
as such) spatial autocorrelation statistics like Moran’s I (Moran 1950; Cliff and Ord 1973) and hot spot
statistics like Getis-Ord’s G statistics (Getis and Ord 1992; Ord and Getis 1995) are suitable alternatives.
These assess the degree of randomness within georeferenced attributes associated to units on a fixed
geographic layout. In fact, many of the latter are essentially identical to different variants of the mark
correlation function (see, e. g., Shimatani (2002)). Thereby, Moran’s I tests for correlations between
neighboured observations across space, while G separates between extremal values (i. e., high and low).

As mentioned earlier, thorough spatial knowledge about social media datasets is typically lacking.
Consequently, analysts oftentimes proceed with a trial-and-error approach when parametrising the methods
mentioned above. It is common practice to apply these techniques to different scales. The goal then is to
sort out that scale at which patterning seems to be most pronounced. However, the techniques mentioned
so far were designed long before the appearance of social media and similar kinds of user-generated data.
The idea of the following two sections is thus to briefly reflect differences between social media and more
traditional data, and to give some recommendations with respect to the spatial analysis of these.

II.5.4.1 Potential Issues and Pitfalls

The issues presented in the following are likely to occur when analysing social media feeds with established
methods from spatial analysis. It is important to note that social media feeds provide a mixture of
indications from different real-world (and also some solely virtual) phenomena. This is due to the
autonomous manner in which the data is being collected. Users can contribute any type of content from
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any place at any time. Such a mixture might be beneficial in terms of the wealth of contained information
about the users’ everyday lives. However, it also imputes some critical problems when it comes to spatial
analysis. Probably the most trivial yet critical among these is the mere mixture of information as such. Any
attribute which is derived from social media is highly likely to include information from several different
real-world phenomena. Analysing social media therefore comes at the risk of drawing conclusions about a
mixture population that might not exist in reality. In most circumstances this is not desirable, since it does
not lead to reasonable insight about any real-world process. One way to overcome this problem would
be an accurate a priori semantic separation. However, that is a non-trivial task on its own right given the
colloquial language used in corresponding messages.

Another issue with social media data is the implicit subjectivity that is per se introduced by the notion of
“humans as sensors” (Goodchild 2007). One implication from that concept is the diversity at which people
perceive environments (see also Section A). Similar phenomena might lead to varying responses among
different users. This inevitably leads to an increased difficulty in analysing the semantics (i. e., the attribute
value) of the observations; and thus to a potential misclassification of phenomena. The implication of that
for spatial analysis is crucial: techniques such as measures of spatial autocorrelation or spatial regression
techniques are based on both, spatial characteristics as well as the attribute values. Consequently, spatial
analysis techniques might end up in spurious results when the analyst fails controlling such effects.

The analysis of social media can also lead to an artificial increase in the number of type I/type II
errors. This problem is likely to occur whenever testing hypotheses about spatial patterns with social
media datasets. One might be interested in assessing spatial heterogeneity by means of local statistics
like local Moran’s I (Anselin 1995) or Gi

* (Ord and Getis 1995). It is common sense that these methods
lead to an increase in type I errors due to alpha error inflation (Nelson 2012). Thus, it is important to
control the alpha level accordingly (e. g., through techniques such as False-Discovery-Rate (Benjamini
and Hochberg 1995)). With social media datasets, however, phenomena operating at smaller scales than
the adjusted analysis scale might be considered by accident; and inadvertently influence the analysis. This
is due to the mixture described above which is leading to spatially overlapping representations of different
phenomena. The result is an increased amount of spurious indications of significant spatial effects.

Another critical implication of the scale-mixture outlined above is a potential creation of wrong and
misleading relationships across scale levels. Recall that observations from smaller scale levels are prone
to inherently being included in analyses at larger scales due to potential geometric mixture. Effects from
smaller scales are therefore likely to be propagated towards analyses at larger scales. Due to this effect,
some results become impossible, e. g., in scenarios where one wants to assess spatial autocorrelation at
some large scale that is influenced by highly autocorrelated observations from smaller scales. If there is
spatial autocorrelation present at some small scale (e. g. one “heavy” Twitter user recurrently posting from
a particular location), it will be carried through to all larger scales being observed in the same geographic
neighbourhood.

Further discussion of these and related problems (including some empirical results) can be found in
Westerholt et al. (2015) (including a discussion of a multi-scale modification of the local G statistic) and
Lovelace et al. (2016). The presented list of effects is of course not exhaustive. There might be many
more effects, some of which are still about to be discovered. The subsequent section provides some hints
and recommendations about how to precede with the spatial analysis of social media data.
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Spatial autocorrelation is the core principle underlying a great deal of spatial analysis methodology.
Therefore, it is crucial to accurately assess this characteristic in order to design applicable methods,
and for drawing reasonable geographic conclusions. This is not just important for exploratory tests
on spatial clustering and heterogeneity, but also crucial for model-driven spatial regression scenarios
such as Geographically Weighted Regression (GWR) (Fotheringham et al. 2002) and for assessing
model misspecification (Cliff and Ord 1981). Unfortunately, in case of social media analysis, the
assessment of spatial autocorrelation is strongly affected by the problems depicted in the previous section.
Therefore, one recommendation in terms of future research is to work on appropriate adaptations of
corresponding measures and techniques in order to account for multi-scale (or rather: “mixed-scale”) and
multi-categorical effects. As long as these are not available, one should carefully parametrise respective
techniques. Another (aspatial) approach might be to decompose social media datasets a priori, probably
based on some other characteristic such as the Tweets’ semantics. The worst option of all, however, would
be to neglect the specific spatial characteristics of social media data when conducting spatial analysis.
That would lead to a wrong evaluation of spatial effects; and thus to wrong analysis results.

Another recommendation is related to one of the promising opportunities that come with social media
datasets: their wealth of information. We can obtain an array of valuable and potentially interrelated prop-
erties from social media data. These include temporal, semantic and spatial information. Correspondingly,
one should try to analyse all these dimensions simultaneously instead of considering them in a separated
fashion. This might unveil a much deeper understanding of social phenomena that are reflected in such
datasets. Recent research efforts like, e. g., Steiger et al. (2016b) reflect this idea. However, it yet remains
a challenge to find measures to incorporate these different kinds of information in joint methodology in a
reasonable way.

II.5.4.3 Conclusion and an Outlook on Future Work

We outlined some potential pitfalls when analyzing social media data spatially. These are caused by the
inherent characteristics of the data, i. e., the way in which the data is collected and what such services are
used for. Potential problems include geometric mixtures of differently scaled data; semantic mixtures that
get blurred in joint attributes derived from the data; and (more generally) spurious assessments of spatial
correlations and thus pattern in the data.

The previous paragraphs are clearly biased towards the concept of spatial autocorrelation. On the one
hand this focus is due to the research focus of the authors. On the other hand this is due to the central role
which spatial autocorrelation plays throughout the entire field of spatial analysis. However, there are of
course other important characteristics and pitfalls that might also influence the spatial analysis of social
media data. The observations come, for instance, with considerable uncertainties with respect to relevant
dimensions: The text snippets are colloquial and oftentimes difficult to interpret (semantics), the time
stamp is sometimes not in line with real-world happenings (temporal) and the geographic coordinates are
prone to positioning inaccuracies (spatial). The intensities of all these uncertainties appear to be varying
across different users, devices, regions, etc. All these uncertainties indeed have impact on the results of
spatial analysis.

Future methodological research should focus on the specific spatial characteristics of social media
data (that are not yet known to a full extent). For now, across all disciplines and domains, it is common
sense to apply established standard methodology to social media data. Relatively little emphasis is put on
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purely methodological research on the background of the special characteristics of these datasets. Thus,
there is still plenty of room for improvement. The discipline of GIScience could play a vital role in these
developments. Beyond purely empirical research, the impact of the spatial disciplines has been quite
small so far. However, given that many research questions around social media are distinctive spatial ones,
we should put much more emphasis on specialized spatial analysis techniques for social media.

II.5.5 Conclusion

On the one hand, social media data offers an array of new perspectives regarding many research questions
and applications. On the other hand, however, these datasets also come with a set of issues that need
to be taken into account, in particular when it comes to spatial analysis. GIScience can contribute to
the development of new spatial analysis methods for social media data. Current major issues from a
GIScience perspective include:

• the need of spatial analysis methods to be adapted towards uncertain and unstructured data types
from LBSN;

• the handling of geographic scale effects when analysing social media data;

• the need for combining different methods across disciplinary boundaries (e.g. social network ana-
lysis, semantic analysis, spatiotemporal analysis), in order to better utilise all available information
dimensions;

• the development of data fusion and information extraction methods that take several different data
sources simultaneously into account.

This would support exploring latent patterns and sensing geographical processes from social media data
in a more realistic manner. GIScience could thus contribute to answering these important geographic
questions and may play a major role in the further exploration of social media data.
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II.6 The Impact of Different Statistical Parameter Values between
Point Based Datasets when Assessing Spatial Relationships

Abstract

User-generated datasets like those extracted from geosocial media are challenging for spatial analysis.
These kinds of data are collected through unmoderated modes of acquisition offering the users a great deal
of freedom in terms of content and other features. Further, the data are influenced by idiosyncratic spatial
concepts of the users. The resulting datasets are therefore heterogeneous and comprise different (often
inseparable) statistical populations in a spatially and temporally superimposed form. As a consequence,
traditional notions of stationarity, which are often required in spatial analysis, are frequently violated
and drawn conclusions about disclosed spatial structures are then misleading. This paper examines the
influence of different statistical parameter values on the exemplary case of Moran’s I estimation, a popular
measure of spatial autocorrelation. The pattern investigated consists of two partially, spatially overlapping
sub-patterns each interacting on different geometric scales. Normal variates drawn from populations with
different means and variances are repeatedly assigned to these sub-patterns and Moran’s I is calculated
for 20.000 overall configurations. The results show strong influences of discrepancies in statistical
parameter values on the characterization of the evaluated spatial patterns. Scales and combinations of
different orders of magnitude of mean and variance differences also play a role. The results indicate that
the spatial analysis of geosocial media posts must take into account different superimposed statistical
populations to ensure meaningful results.

Keywords: Spatial Analysis, Spatial Autocorrelation, Spatial Statistics, Stationarity, Geosocial Media

II.6.1 Introduction and Background

Spatial analysis techniques like hot-spot estimators, spatial autocorrelation measures and spatial regression
models (Getis 2008) are applied to investigate the interaction behaviour within spatial random variables
(Fischer and Getis 2010b). One important assumption when using these techniques is the notion of
stationarity, describing different forms of homogeneity with varying degrees of intensity (Zimmermann
and Stein 2010). Spatial autocorrelation techniques like Moran’s I are based on second-order (or weak)
stationarity (Cliff and Ord 1981; Aldstadt 2010) which imply constant means and variances. This
assumption is important to assure the validity of auxiliary parameters and to simplify randomisation
procedures for constructing null models. Many recent user-generated and ambient datasets like those
extracted from Twitter infringe traditional stationarity conditions. These kinds of data are obtained
from unmoderated acquisition schemes that allow users to choose freely the locations, time stamps and
contents of their posts. This leads to a noisy dataset featuring few observations about many simultaneous
phenomena (Lovelace et al. 2016). Further ambiguity is added by the idiosyncratic spatial perceptions of
the users (Wender et al. 2002) and by demographic characteristics like age or gender (Weiss et al. 2003;
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Sugovic and Witt 2013). The resulting non-identical random variables are thus spatially and temporally
mixed, because not all of these complex differences can be sorted out a priori. Using these data in
the vein of the humans-as-sensors concept (Goodchild 2007) thus requires a treatment of their inherent
heterogeneity, affecting stationarity assumptions.

This paper examines the influence of varying statistical parameter values within co-located but non-
identical random variables on the spatial autocorrelation measure Moran’s I. Related work has been
carried out recently by (Westerholt et al. 2015; Westerholt et al. 2016), who investigated superimposed
scale characteristics and the effect of inappropriately positioned but highly cross-linked observations on
spatial analysis results. By analogy, it was shown in earlier works that Moran’s I requires a minimum
degree of variability within the analysed attributes (Walter 1992b), whereas variability in the connectivity
degrees of the random variables is a major nuisance affecting the validity of analysis results (Tiefelsdorf
and Boots 1997; Tiefelsdorf et al. 1999). It was further found that unstable variance (“heteroscedasticity”)
leads to problematic randomizations and thus to wrong inferences (Oden 1995; Waldhör 1996; Assuncao
and Reis 1999). Griffith (2010) recently investigated effects of attribute value deviations from normality,
which is a prerequisite for a sufficiently fast convergence of Moran’s I to a normal distribution. He
conjectured that deviations are unproblematic as long as the distribution of the data resembles a bell curve,
or is at least symmetric in shape. Most outlined results have been achieved under the premise of spatially
disjoint random variables. This paper supplements these findings with the case of varying means and
variances under the assumption of spatially superimposed random variables.

The presented work analyses a range of possible mean-variance combinations resembling different
kinds of overlapping but eventually indistinguishable phenomena. One-thousand synthetic points are
generated mimicking two processes, each of which is operating at a specific interaction scale. These
are populated with normal attributes featuring specific mean-variance combinations between the two
sub-patterns. Two populations are thus involved in each studied case, one for the larger-scale, and another
for the smaller-scale one of the overlapping processes. In addition, these cases are studied under the
premises that (i) both involved sub-patterns are themselves spatially uncorrelated or (ii) that both patterns
are spatially structured. Indications are given for systematic behaviours in these combinations. Further,
influences of the differing means and variances on the magnitude and range of Moran’s I are revealed.
The achieved insights facilitate a better understanding of spatial analysis results obtained from geosocial
media and related data.

II.6.2 Methods

II.6.2.1 Pattern Construction

Synthetic data is used to have full control over parameters and to achieve interpretable results. The
geometric setup of two overlapping point patterns is generated by placing an initial random point first.
Additional 500 points are added iteratively and conditional on the respective preceding point by drawing
random directions and distances from uniform distributions. A second pattern that was created in the same
way is then moved so that it overlaps about 25 % of the first pattern. The continuous uniform distributions
used for drawing directions and distances on two interaction scales are given by U(0, 360), and U(40, 50)

(“small-scale”) or U(70, 80) (“large-scale”).
The generated synthetic point locations are assigned normal attribute values which are randomly

assigned for spatially uncorrelated cases (Figure II.6.1a). In contrast, the values are allocated to the points
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Figure II.6.1: Illustration of the investigated overlapping patterns for µ1 = 250, µ2 = 750, σ1 = σ2 = 1.
(a) Spatially random patterns, (b) spatially autocorrelated patterns.
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in a radial manner when patterns are spatially structured (Figure II.6.1b). In the interior there are lower
values, which increase towards the edges of the respective sub-pattern. The outline of the actual means
and standard deviations used is found in Section II.6.3.

II.6.2.2 Moran’s I

The estimator studied, Moran’s I, is a measure of spatial autocorrelation. It measures the degree of
correspondence between structures in geographic space and those found in an attribute. It reads as (Cliff
and Ord 1981; Getis 2010)

I =
n∑n

i=1

∑n
j=1wij

·
∑n

i=1

∑n
j=1wij(xi − x̄)(xj − x̄)∑n

i=1(xi − x̄)2
(II.6.1)

where x1, . . . , xn represent n attribute values with mean x̄ indexed over spatial units si. The wij denote
pairwise positive spatial weights. Moran’s I is the most frequently used estimator of spatial autocorrelation.
It is typically preferred over alternative measures like Geary’s c for its superior power characteristics and
because it is less prone to statistical and configurational outliers (Chun and Griffith 2013). The applied
spatial weights have a distance cut-off at 80 distance units (the upper bound of the large-scale interaction)
and follow an inverse distance weighting scheme given by

wij =

{
|si − sj |−2 |si − sj | ≤ 80,

0 otherwise.
(II.6.2)

This scheme is chosen for resembling the distance-based rules that are used for constructing the patterns
(see Section II.6.2.1).

II.6.3 2.3 Heat Maps of I with Differing Configurations

Moran’s I is estimated from 20.000 different random statistical configurations on the overlapping point
pattern. Two heat maps are generated from these: one for the case of uncorrelated attributes (Figure
II.6.1a) and another map for the spatially-structured sub-patterns (Figure II.6.1b). Each grid cell in these
heat maps represents a specific statistical configuration. This makes it possible to examine the role of the
relationship of different means and variances of a process to multiples of the same values on the other
process. Each parameter value of one process is thereby adjusted to a multiple of the same parameter of
the other process. The heat maps are centred, meaning that the mean and variance for both processes are
the same (1:1) in the central grid cell. A ratio of 1:3 in the left x-direction then means that the mean value
of the small-scale pattern is 3 times that of the large-scale pattern. This applied scheme is illustrated in
Figure II.6.2.

II.6.4 Results

For all results obtained, the initial means and variances, multiples of which are taken, start at µ = 25 and
σ2 = 400. Depending on which side the heat map is viewed, integer multiples of these values are adapted
either for the small-scale (left and up) or for the large-scale pattern (right and down). The multiplication
factor thereby corresponds to the number of shifted grid cells.
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Figure II.6.2: Illustration of the applied heat maps. Variable k denotes the maximum number of multiples
of the statistical parameters from the respective other investigated pattern.

II.6.4.1 Statistical Influences with Superimposed Spatial Random Patterns

The results for the case of spatially uncorrelated overlapping patterns are given in Figure II.6.3. The
Moran’s I values in the heat map in Figure II.6.3a appear noisy. This is caused by the randomness
introduced by the lack of spatial structure in the two overlapping patterns.

The means involved must be almost identical to observe Moran’s I values close to its expected value
of E[I] = −0.001. This is supported by the box plots given in Figure II.6.3b showing that, as soon as one
of the means is more than three times that of the other, the spatial pattern in the data appears too negatively
autocorrelated. Further, high positive outliers that indicate clustering are only found on the same interval
of nearly identical means. These outliers are caused by similar values from the different patterns, which
are arbitrarily arranged next to each other by the spatial randomness in the attributes. However, this cannot
happen when the means become too different, because all values are then too far away from the overall
joint mean value, prohibiting positive autocorrelation.

Mean ratios determine the magnitude of Moran’s I. When the means are very different the overall
pattern tends to be underestimated. The degree of underestimation converges to an almost constant level
after the ratio of the means exceeds a factor of 10. Beyond this mark, further differences in the means
have only a minor impact on the magnitude of Moran’s I. The box plots in Figure II.6.3b reveal this effect
by the absence of a common trend line. The mean-induced effects are symmetric indicating that it does
not matter whether the mean of the small-scale process exceeds the large-scale mean or vice versa.

The ratio of the attribute variances dominates the range of Moran’s I. Figure II.6.3c shows that the
variability in the estimated I values is small when the variances are roughly identical. In contrast, the
dispersion of Moran’s I increases when the variances of the two populations become more different.
Moran’s I then shows a wider range of values with more outliers, both positive and negative. These effects
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are again symmetric, which shows that the scale of the overlapping patterns is not crucially important for
a characterisation of spatial autocorrelation when random attribute patterns overlap.

II.6.4.2 Effects of Spatially Autocorrelated Patterns

The heat map shown in Figure II.6.4 provides the Moran’s I values for the case of spatially structured
superimposed patterns. The spatial structuring causes a smoother transition of Moran’s I over the grid
cells of the heat map, meaning that the estimation of the statistic is more predictable with respect to
statistical parameters than with spatially random attributes.

Differences in mean values determine the magnitude of Moran’s I. In contrast to the symmetric
behaviour observed with spatially random patterns, larger means in the small-scale process lead to higher
Moran’s I estimates than vice versa (Figure II.6.4b). The reason is that, because of the applied weighting
scheme, more values above the global combined mean value are being related with a relatively high
weight, in turn leading to higher I values. This demonstrates a strong interaction between the type of
applied spatial weights and the involved superimposed geometric scales.

The rate at which differing means become effective is not symmetrical. While a relative increase in
the mean of the smaller-scale process takes effect slowly, a sharper decrease in Moran’s I is observed
when the large-scale process becomes prominent. Clearly, there is a strong interaction between geometric
and statistical parameters in the spatial analysis of spatially structured, partially overlapping patterns.

Differing variances play a minor role in comparison to the effects induced by mean differences. One
notable observation is made in the case of dominant small-scale variances when the means are held almost
identical at the same time. A large number of more pronounced positive autocorrelations is found on
this interval, and that is caused by the generally larger number of points in the outer parts of the patterns.
These feature higher attribute values than the interior parts. When the variance increases, the differences
between interiors and outer parts become more pronounced, meaning that more and higher attribute values
from one pattern interact with similar ones from the other. This effect vanishes once the small-scale means
exceed those of the large-scale pattern by a factor of approximately 15. Further, when the radial attribute
pattern is reversed, the same effect appears in reversed form (i. e., the red grid cells in the heat map are
then mirrored on the X-axis).

Another variance effect is that the range of Moran’s I is smallest when the variances of the involved
attributes are almost identical. The affected interval is narrow, and there is a sharp but symmetric increase
in both magnitude and range of Moran’s I as soon as either of the variances dominates.

II.6.5 Discussion and Conclusions

This paper examines the effects of different spatially superimposed statistical populations as those found in
geosocial media data. The results are obtained on a synthetic spatial layout that mimics a partial geometric
overlap of different phenomena. The following key insights are obtained:

1. Differing means determine the magnitude of Moran’s I.
2. Differing variances determine the range of Moran’s I.
3. Differences in the means and variances are only marginally related to their associated scales when

the overlapping patterns are themselves spatially random.
4. When superimposed patterns are spatially structured, the scale of the pattern associated with the

dominant mean value is stronger related with changes in the interpretation of Moran’s I.
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Figure II.6.3: Moran’s I with superimposed spatially random patterns. (a) Heat map of Moran’s I values
with different mean-variance combinations in the attributes; (b) Box plots summarizing the
influences of mean differences (i. e., the rows); (c) Box plots summarizing the influences of
differing variances (i. e., the columns).
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Figure II.6.4: Moran’s I with superimposed spatially autocorrelated patterns. (a) Heat map of Moran’s I
values with different mean-variance combinations in the attributes; (b) Box plots summar-
izing the influences of mean differences (i. e., the rows); (c) Box plots summarizing the
influences of differing variances (i. e., the columns).
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Limitations exist in both the chosen layout as well as the applied spatial weighting scheme. Other
geometric forms and interaction types exist, as well as further relevant weighting schemes that are not
investigated in this paper. Further, the drawn variates are taken from normal distributions only. Count data
or rates are beyond the scope of this paper and deserve treatment in future research. This is especially
the case when the overlapping attributes form mixtures not non-symmetric random variables (cf. Griffith
2010).

Despite being spatial nature, the research carried out in this paper contributes to the recent efforts to
develop a GIScience theory of platial analysis. The focus on spatial superposition is thereby interesting,
because, other than in traditional GIS, places are spatially overlapping and co-located places must not be
mutually related (Goodchild 2015). This work further supports efforts in other related disciplines facing
similar technical issues. The event-sampling method (ESM) from psychology, which collects survey
responses in situ, is one such example (Bluemke et al. 2017) for which the obtained results are useful with
respect to the design of appropriate analytical approaches and to the interpretation of the collected survey
responses.

Future research should consider other geometric setups combined with other types of attributes and
dispersal mechanisms. Further, related measures like Geary’s c or G*

i might lead to slightly different
results, as these combine statistical information in different ways. For instance, unlike Moran’s I, Geary’s c
estimates covariance through calculating squared attribute differences, which could change the results
obtained in this paper.
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